#### **Protective Coatings for Lunar Dust Tolerance**



#### Valerie L. Wiesner<sup>1,\*</sup>, Glen C. King<sup>1</sup>, Keith L. Gordon<sup>1</sup>, Lopamudra Das<sup>2</sup>, Jonathan J. Hernandez<sup>2</sup>, <u>Christopher J. Wohl<sup>1</sup></u>

<sup>1</sup>Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, Virginia 23681 <sup>2</sup>Analytical Mechanics Associates, Hampton, Virginia, 23666

2023 Contamination, Coatings, Materials, and Planetary Protection (CCMPP) Workshop NASA Goddard Space Flight Center, Greenbelt, MD September 12-14, 2023

\*Corresponding Author: Valerie.I.wiesner@nasa.gov

## Overview: Protective Coatings for Lunar Dust Tolerance



- Return to the Moon: Artemis Missions and beyond
- Materials development for lunar dust tolerant applications
  - $_{\odot}$  Protective coatings for near-term use
  - $_{\odot}$  Testing and characterization

#### Ongoing and future efforts

- Preliminary results
- Processing and manufacturing opportunities



GO





#### **EXPLORE**

**Rapid, Safe, and Efficient Expanded Access to Diverse Sustainable Living and Working Transformative Missions Space Transportation Farther from Earth Surface Destinations** and Discoveries Landing Advanced Communication **Heavy Payloads Advanced Propulsion** es. Gateway **Autonomous Operations** In-space Assembly/Manufacturing **Sustainable Power In-space Refueling Dust Mitigation Precision Landing** Advanced Commercial Lunar Payload Services **In-Situ Resource Utilization Navigation** Atmospheric ISRU **Cryogenic Fluid Management** NAME OF THE OWNER OF THE OWNER Surface Excavation and Construction **Extreme Access/Extreme Environments** 



Lunar Surface Innovation Initiative (LSII)

# Lunar Dust Composition and Characteristics



#### **Composition (by wt.):** 50% SiO<sub>2</sub>, 15% Al<sub>2</sub>O<sub>3</sub>, 10% CaO, 10% MgO, 5% TiO<sub>2</sub> and 5-15% Fe

- Composition varies depending on location [1]
  - Lesser amounts of sodium, potassium, chromium and zirconium
  - Trace amounts of virtually all elements from parts per billion (ppb) to parts per million (ppm) level
  - Mixture of crystalline and amorphous material
- Particle properties [2]
  - Particle size varies from nm to mm; range of primary concern 1 to 100 µm-sized particles
  - Nominal density ~1.5 g/cm<sup>3</sup>
  - o Irregular, jagged morphology
  - Electrically charged

Preventing dust adhesion and wear to spacesuits and equipment is a critical component of safety and success of future lunar surface exploration missions

[1] D.J. Loftus, et al., "The Chemical Reactivity of Lunar Dust Relevant to Human Exploration of the Moon," *Planetary Science Division Decadal Survey white paper* (2020). [2] C. Meyer, NASA Lunar Petrographic Thin Section Set (2003).



Image Credits Left: NASA Right: NASA AS11-40-5951

# Plume-Surface Interactions During and After Lunar Landing Events



- Limited experimental data on lunar dust particle velocities and angles of impingement
  - Nano- to micrometer-sized particle sizes
  - Within 50 m of landing site, particle velocity estimates 300 m/s
    to 2000 m/s



# Materials Development for Lunar Dust Tolerant Applications



#### **Novel materials and architectures**

- Additive manufacturing (AM) of transition metal borides
  - Feasibility assessment to produce coatings and bulk materials
- Longer-term application (>10 years)

#### **Protective coatings and materials**

- Commercial-of-the-shelf (COTS) coating compositions
  - Ceramics
  - o Metals
- Near-term application (<10 years)</li>

#### **Testing and characterization**

- Coupon-level mechanical property assessment
- Surface roughness and adhesion properties
- Material performance in representative environments
- Flight experiments

#### Coating Candidates for Mitigating Lunar Dust Abrasion and Adhesion

|          |   | • |  |
|----------|---|---|--|
|          | X |   |  |
| $\times$ |   |   |  |

| Material                                                            | Density<br>(g/cm <sup>3</sup> ) | CTE<br>(µm/m-°C) | Processing<br>Method |  |  |  |  |
|---------------------------------------------------------------------|---------------------------------|------------------|----------------------|--|--|--|--|
| Substrate Materials                                                 |                                 |                  |                      |  |  |  |  |
| Aluminum 6061                                                       | 2.7                             | 23.6             | -                    |  |  |  |  |
| Ti-6Al-4V                                                           | 4.43                            | 9.1              | -                    |  |  |  |  |
| Candidate Coating Material Properties                               |                                 |                  |                      |  |  |  |  |
| Alumina (Al <sub>2</sub> O <sub>3</sub> )                           | 3.76                            | 8.3              | APS                  |  |  |  |  |
| Alumina-Titania (Al <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub> ) | 3.5                             | 3.9              | APS                  |  |  |  |  |
| Boron Carbide (B <sub>4</sub> C)                                    | 2.53                            | 9.4              | Vacuum-PS            |  |  |  |  |
| Chromium Carbide (CrC)                                              | 6.68                            | -                | HVOF                 |  |  |  |  |
| Chromium Oxide (Cr <sub>2</sub> O <sub>3</sub> )                    | 5.22                            | 3.7              | APS                  |  |  |  |  |
| Chromium Carbide-Nickel                                             |                                 | 6.4              |                      |  |  |  |  |
| Chromium (CrC-NiCr)                                                 | -                               | 0.4              | ПУОГ                 |  |  |  |  |
| Co-Mo-Cr-Si                                                         | 8.6                             | -                | HVOF                 |  |  |  |  |
| (Tribalov T-800)                                                    |                                 |                  |                      |  |  |  |  |

- Coating applications
  - High-performance machining and tooling
  - Mining and drilling
  - Gears and bearings
  - Armor/defense

#### Coating candidate material requirements

- Low density
- Substrate compatibility
- Processability
  - Air plasma spray (APS)
  - Vacuum plasma spray (PS)
  - High velocity oxygen fuel (HVOF)

## Test Methods to Evaluate Lunar Dust Abrasion and Adhesion



- Coupon-level mechanical property assessment
  - Taber abrasion (ASTM D4060)
  - Pin-on-Disc Tribometry
  - Thermal shock
  - Hardness
- Assessing performance in more representative environments
  - **o** Particulate erosion rig
  - o Wear under vacuum
  - Flight experiments
- Down-select promising ceramic coating for test article



Al6061 substrates coated with (a)  $AI_2O_3$ -TiO<sub>2</sub>, (b) CrO<sub>2</sub>, (c) Co-Mo-Cr-Si and (d) Cr<sub>3</sub>C<sub>2</sub>-NiCr

## Taber Abrasion (ASTM D4060)

NASA

- QualTest GT-7012-T Taber Type Abrasion Tester
- Lower rotating abrasive wheel onto specimen fixed in spinning specimen mount for up to 5000 cycles
  - $\circ~$  Measure decrease in coating thickness using Eddy current instrument
  - $\,\circ\,\,$  Track weight loss before and after cycles



Taber abrasion test setup



- After 5000 cycles:
  - Change in coating thickness varied with composition
  - Weight change inconclusive across all compositions
- Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> showed greatest decrease in coating thickness
  23.6 μm ± 4.1 μm
- CrC-NiCr exhibited smallest decrease in coating thickness
   1.75 µm ± 1.2 µm

## Change in Surface Roughness of Coatings After Taber Testing



- Notable decrease in R<sub>a</sub> and R<sub>q</sub> values observed in all compositions
  - Largest decrease in values observed in alumina (Al<sub>2</sub>O<sub>3</sub>) coating
    - $\circ~~\mathsf{R}_a$ : 5.77  $\mu m$  to 2.26  $\mu m$
  - Smallest decrease in values observed in CrC and Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> coatings
    - $\circ~$  CrC R<sub>a</sub>: 2.51  $\mu m$  to 2.33  $\mu m$
    - $\circ~$  Al\_2O\_3-TiO\_2 R\_a: 6.53  $\mu m$  to 5.82  $\mu m$





- R<sub>a</sub>: Average roughness
- R<sub>q</sub>: Root mean square roughness

## **Pin-on-Disc Tribometry (ASTM G99)**



50µm

50um

Material transfe

Wear tracks

- CSM Instruments, model TRB
- Speed: 20 cm/s, Load: 5N, Sliding distance: 100 m (+900m for wear rate < 0.0001 mm3/Nm)
  - Determination of wear rate (quantitative) and analyze material transfer (qualitative)





CSM Instruments, model TRB

Image credit: Prof. Surojit Gupta and Mackenzie Short, SAA1-32507

Wear Rates

SE: Secondary electron, BSE: Back-scattered electron 11

**CrC Surface** 

Material transfer

# **Cryogenic Solid Particle Erosion (SPE)**



- Custom-built instrument enabling cryogenic (liquid nitrogen, LN2) test conditions during controlled particle erosion
- Volcanic soil (18  $\mu$ m diameter) from Mauna Kea, Hawaii Island, Hawaii
  - $_{\odot}\,$  Impact angles of 30°, 60°, and 90° evaluated during 30 s particle exposure



Image credit: Prof. Getu Hailu, NASA EPSCoR R3 Recipient, Award Number 80NSSC21M0137

# Characterizing Wear by Lunar Dust Simulant in Vacuum

- Surveying Lunar Dust Influence on Device Efficacy (SLIDE) chamber
  - Subject materials to wear caused by lunar dust in vacuum
- Leverage ASTM standards
  - Taber abrasion (ASTM D1044)
  - Pin abrasion (ASTM G132)
  - Falling sand abrasion (ASTM D968)
  - Wear testing with ball on disc (ASTM G99)
- Configurable to accommodate variety of mechanisms relevant to application







#### **SLIDE** chamber components

- 1. Supporting Bracket
- 2. Testing Coupons
- 3. Active Plate
- 4. Motor
- 5. Lunar Simulant
- 6. Dust Shaker
- 7. Container (Cross Section View)

# Assessing Materials Performance in Extreme Environments



#### Low-earth orbit (LEO)

- MISSE-16 (Materials ISS Experiment Flight Facility) (returned on April 15, 2023, CRS-27)
- Sun facing: Zenith position for six-month exposure to:
  - o Solar ultraviolet radiation
  - Atomic oxygen in low Earth orbit (minor)
- Optical images collected throughout duration
- Specimens returned for ground-based analysis

#### Lunar surface

- PlanetVac Instrument on Firefly Aerospace Blue Ghost Lander (2024)
  - $\circ$  Mare Crisium location
  - Direct exposure in lunar environment
- Optical observation throughout duration of exposure
- Specimens remain on Moon upon conclusion of mission



Location of MISSE-16 on International Space Station (ISS)

| Coating      | Exposure      |  |
|--------------|---------------|--|
| Compositions | Туре          |  |
| $Cr_2O_3$    | LEO           |  |
| CrC          | LEO           |  |
| CrC-NiCr     | LEO           |  |
|              | Lunar surface |  |





Artist rendering of Firefly Aerospace Blue Ghost Lander

Mare Crisium planned landing site

## Protective Coatings: On-going and Future Efforts



- Cr<sub>3</sub>C<sub>2</sub>-NiCr shows notable promise as protective coating
  - Exhibited lowest change in coating thickness after Taber abrasion testing
  - Possessed low as-processed surface roughness and lunar dust adhesion (data not shown)\*
  - Yielded very low tribometry and cryogenic SPE erosion rates
- Microstructural and compositional evaluation
  - Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) of coating cross-sections
  - Phase analysis via X-ray diffraction (XRD)
- Thermal and mechanical properties
  - o Quench testing
  - Room temperature hardness
  - Cryogenic hardness
- Extreme environment testing
  - Wear testing in vacuum
  - Exposure in LEO and lunar surface environments



Material technologies for use on future Artemis Missions (image captured during 2022 Artemis I Mission)

#### Materials Development for Lunar Dust Tolerant Applications



- Materials that mitigate lunar dust adhesion and abrasion are needed to enable sustainable lunar exploration
  - Lunar dust poses threat to current and future lunar mission success
  - Plume-surface interactions especially challenging
- Exploring protective coatings to enable reusable lunar lander
  - Preliminary abrasion and adhesion results suggest CrC-NiCr coatings show promise
  - Evaluation of additional ceramic and metallic compositions underway
- Evaluating material candidates via coupon-level assessments and environmental testing
  - Traditional coupon-level mechanical testing
  - Unique in-house screening capabilities, including vacuum chamber for wear testing and system performance as a result of simulant exposure
- Processing and manufacturing opportunities abound

#### Acknowledgements

- Dr. Glen King, LaRC
- Dr. Lopamudra Das, LaRC/NIA\*
- Dr. Keith Gordon, LaRC
- Jonathan Hernandez, LaRC/NIA
- Dr. Kristen John, JSC\*
- Erica Montbach, GRC\*
- Karen Taminger, LaRC
- Prof. Getu Hailu and Mackenzie Short, Univ. of Alaska, Anchorage

- Harold Claytor, LaRC/AMA\*
- David Paddock, LaRC
- Michelle Munk, LaRC
- Dr. Stephen Hales, LaRC
- Dr. David Stegall, LaRC
- Joel Alexa, LaRC/AMA
- Dr. Yi Lin, LaRC
- Prof. Surojit Gupta, Univ. of North Dakota

Support from NASA Langley Research Center Innovation Fund and Space Technology Mission Directorate Game Changing Development Program

\*NIA: National Institute of Aerospace, JSC: Johnson Space Center, GRC: Glenn Research Center, AMA: Analytical Mechanics Associates

# ARTEMIS

# **Target Applications in Lunar Environment**





#### Lunar Dust Adhesion Mitigation Opportunities and Needs

- 1 Environment suits Visors, joints, controls
- 2 Sensing / optical equipment Lenses, sensors, connectors
- **3** Airlocks Door seals, interior surfaces, controls
- 4 Communications equipment Dish surfaces, sensors
- 5 Solar arrays Panel surfaces Image credit: NASA

6 Power distribution equipment Connectors, radiators
 7 Lunar rovers Gears, bearings, shafts, screens, radiators, instrumentation
 8 Lander / Landing site Hatches, instrumentation, fueling equipment
 9 Habitat Joints / seals / interlocks
 10 Excavating equipment Bearings, controls, gears

- Enable sustainable human presence by leveraging materials and coating technologies to *mitigate* and/or *manage* lunar dust
  - Lunar rover mechanisms: gears, bearings, shafts
  - Lander: lander legs, hatches
  - Habitat: joints, interlocks
  - Excavating equipment: bearings, gears

#### Surface Roughness of As-processed Coatings



- FormFactor (FRT) of America Microprof 100 Profilometer
  - Data collected on pristine as-processed coating surface
    - $\,\circ\,$  10  $\mu m$  between data points
    - $\circ~40~\mu m$  between data lines
- R<sub>a</sub>: Average of individual heights and depths from mean elevation of profile
- R<sub>q</sub>: Root mean square of individual heights and depths from mean line
  - >  $AI_2O_3$ -TiO<sub>2</sub>,  $AI_2O_3$  and  $B_4C$  had highest  $R_a$  and  $R_q$  values
  - CrC, Co-Mo-Cr-Si and CrC-NiCr possessed lowest R<sub>a</sub> and R<sub>q</sub> values

| Material            | R <sub>a</sub><br>(µm) | R <sub>q</sub><br>(μm) |
|---------------------|------------------------|------------------------|
| $AI_2O_3$           | 5.77                   | 7.27                   |
| $Al_2O_3$ -Ti $O_2$ | 6.53                   | 8.03                   |
| B <sub>4</sub> C    | 5.50                   | 7.02                   |
| CrC                 | 2.52                   | 3.21                   |
| $Cr_2O_3$           | 4.31                   | 5.38                   |
| CrC-NiCr            | 4.06                   | 5.09                   |
| Co-Mo-Cr-Si         | 3.28                   | 4.12                   |