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Overview: Protective Coatings for Lunar Dust 

Tolerance
• Return to the Moon: Artemis Missions and beyond

• Materials development for lunar dust tolerant applications

o Protective coatings for near-term use

o Testing and characterization

• Ongoing and future efforts

o Preliminary results

o Processing and manufacturing opportunities

NASA artist’s depiction of the lunar surface 

environment. Lunar dust will impact a variety of 

critical technologies needed to enable a 

sustainable human lunar presence. 

[Image credit: NASA] 2



NASA artist’s depiction of the lunar surface 

environment. Lunar dust will impact a variety 

of critical technologies needed to enable a 

sustainable human lunar presence.Lunar Surface Innovation Initiative (LSII)
3Image credit: NASA



Lunar Dust Composition and Characteristics
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• Composition varies depending on location [1]

o Lesser amounts of sodium, potassium, chromium 
and zirconium

o Trace amounts of virtually all elements from parts 
per billion (ppb) to parts per million (ppm) level

o Mixture of crystalline and amorphous material

• Particle properties [2]

o Particle size varies from nm to mm; range of 
primary concern 1 to 100 µm-sized particles

o Nominal density ~1.5 g/cm3

o Irregular, jagged morphology 

o Electrically charged

Composition (by wt.): 50% SiO2, 15% Al2O3, 10% CaO, 10% MgO, 5% TiO2 and 5-15% Fe 

Image Credits Left: NASA Right: NASA AS11-40-5951

[1] D.J. Loftus, et al., “The Chemical Reactivity of Lunar Dust Relevant to Human Exploration of the Moon,” Planetary Science Division Decadal Survey white paper (2020).

[2] C. Meyer, NASA Lunar Petrographic Thin Section Set (2003). 

Preventing dust adhesion and wear to spacesuits and equipment is a critical 

component of safety and success of future lunar surface exploration missions



• Limited experimental data on lunar dust particle velocities 
and angles of impingement

o Nano- to micrometer-sized particle sizes

o Within 50 m of landing site, particle velocity estimates 300 m/s 
to 2000 m/s

Plume-Surface Interactions During and After 

Lunar Landing Events

Image Credits Top Right: NASA MSFC/Peter Liever; Bottom Left: NASA LaRC; Bottom Right: NASA Lunar Surface Wear Map https://plumesurfacewearmap.larc.nasa.gov/ 
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Materials Development for Lunar Dust Tolerant 

Applications
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• Additive manufacturing (AM) of 
transition metal borides

o Feasibility assessment to produce 
coatings and bulk materials

• Longer-term application (>10 years) 

• Commercial-of-the-shelf (COTS) 
coating compositions

o Ceramics

o Metals 

• Near-term application (<10 years)

Novel materials and architectures Protective coatings and materials

• Coupon-level mechanical property assessment

• Surface roughness and adhesion properties

• Material performance in representative 
environments

• Flight experiments

Testing and characterization



Coating Candidates for Mitigating Lunar Dust 

Abrasion and Adhesion
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7CTE: Coefficient of thermal expansion

Material

Density

(g/cm3)

CTE

(µm/m·°C)

Processing

Method

Substrate Materials

Aluminum 6061 2.7 23.6 -

Ti-6Al-4V 4.43 9.1 -

Candidate Coating Material Properties

Alumina (Al2O3) 3.76 8.3 APS

Alumina-Titania (Al2O3-TiO2) 3.5 3.9 APS

Boron Carbide (B4C) 2.53 9.4 Vacuum-PS

Chromium Carbide (CrC) 6.68 - HVOF

Chromium Oxide (Cr2O3) 5.22 3.7 APS

Chromium Carbide-Nickel 

Chromium (CrC-NiCr)
- 6.4 HVOF

Co-Mo-Cr-Si 

(Tribaloy T-800)
8.6 - HVOF

• Coating applications

- High-performance 
machining and tooling

- Mining and drilling

- Gears and bearings

- Armor/defense

• Coating candidate 
material requirements

- Low density

- Substrate compatibility

- Processability 

o Air plasma spray 
(APS)

o Vacuum plasma spray 
(PS)

o High velocity oxygen 
fuel (HVOF)



• Coupon-level mechanical property assessment

o Taber abrasion (ASTM D4060)

o Pin-on-Disc Tribometry

o Thermal shock

o Hardness 

• Assessing performance in more representative 
environments

o Particulate erosion rig 

o Wear under vacuum 

o Flight experiments

• Down-select promising ceramic coating for test 
article

Test Methods to Evaluate Lunar Dust Abrasion 

and Adhesion

image credit: NASA
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0.5 in

Al6061 substrates coated with (a) Al2O3-TiO2, (b) 

CrO2, (c) Co-Mo-Cr-Si and (d) Cr3C2-NiCr

(a)

(c) (d)

(b)



• QualTest GT-7012-T Taber Type Abrasion Tester

• Lower rotating abrasive wheel onto specimen fixed in spinning specimen mount 
for up to 5000 cycles 

o Measure decrease in coating thickness using Eddy current instrument

o Track weight loss before and after cycles

Taber Abrasion (ASTM D4060)

Image credit: NASA
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Taber abrasion test setup
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Coating Composition

Al2O3

Al2O3-

TiO2

B4C

CrC

CrC-NiCr

Cr2O3

Co-Mo-

Cr-Si

• After 5000 cycles:

o Change in coating thickness 

varied with composition

o Weight change inconclusive 

across all compositions

• Al2O3-TiO2 showed greatest 

decrease in coating thickness

o 23.6 µm ± 4.1 µm

• CrC-NiCr exhibited smallest 

decrease in coating thickness

o 1.75 µm ± 1.2 µm



• Notable decrease in Ra and Rq values observed in all compositions

- Largest decrease in values observed in alumina (Al2O3) coating
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Change in Surface Roughness of Coatings After 

Taber Testing
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Al2O3 Al2O3-

TiO2

B4C CrC CrC-

NiCr

Cr2O3 Co-Mo-

Cr-Si

o Ra: 5.77 µm to 2.26 µm

- Smallest decrease in values 
observed in CrC and Al2O3-
TiO2 coatings
o CrC Ra: 2.51 µm to 2.33 µm

o Al2O3-TiO2 Ra: 6.53 µm to 
5.82 µm

Ra Rq

CrC

• Ra: Average roughness

• Rq: Root mean square roughness

Wear 

Path 
Wear 

Path 

Al2O3



• CSM Instruments, model TRB

• Speed: 20 cm/s, Load: 5N, Sliding distance: 100 m (+900m for wear rate < 0.0001 
mm3/Nm )

- Determination of wear rate (quantitative) and analyze material transfer (qualitative)

Pin-on-Disc Tribometry (ASTM G99)
11
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Wear Rates

Abrasive 

Wheel

Image credit: Prof. Surojit Gupta and Mackenzie Short, SAA1-32507

CrC-NiCr Surface

CrC SurfaceCSM Instruments, model TRB

SE: Secondary electron, BSE: Back-scattered electron



• Custom-built instrument enabling cryogenic (liquid nitrogen, LN2) test conditions 
during controlled particle erosion

• Volcanic soil (18 mm diameter) from Mauna Kea, Hawaii Island, Hawaii

o Impact angles of 30º, 60º, and 90º evaluated during 30 s particle exposure

Cryogenic Solid Particle Erosion (SPE)
12
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Erosion Rates

Abrasive 

Wheel

Image credit: Prof. Getu Hailu, NASA EPSCoR R3 Recipient, Award Number 80NSSC21M0137

Cryogenic SPE Instrument 

Before Wear After Wear

Erosion Rate for Al2O3 was 470% greater at 60º. 

CrC-NiCr Surface

CrC Surface

Before Wear After Wear

LN2 pressurizing 

and dispensing 

device

Dust collector

Micro-blaster



• Surveying Lunar Dust Influence 
on Device Efficacy (SLIDE) 
chamber

o Subject materials to wear caused 
by lunar dust in vacuum

• Leverage ASTM standards 

o Taber abrasion (ASTM D1044)

o Pin abrasion (ASTM G132)

o Falling sand abrasion (ASTM 
D968)

o Wear testing with ball on disc 
(ASTM G99)

• Configurable to accommodate 
variety of mechanisms relevant to 
application

Characterizing Wear by Lunar Dust Simulant in 

Vacuum

Image credit: NASA
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SLIDE chamber components

1. Supporting Bracket

2. Testing Coupons

3. Active Plate

4. Motor

5. Lunar Simulant

6. Dust Shaker

7. Container (Cross Section 

View)



Low-earth orbit (LEO)

• MISSE-16 (Materials ISS Experiment Flight 
Facility) (returned on April 15, 2023, CRS-27)

• Sun facing: Zenith position for six-month 
exposure to: 

o Solar ultraviolet radiation

o Atomic oxygen in low Earth orbit (minor)

• Optical images collected throughout duration

• Specimens returned for ground-based analysis 

Assessing Materials Performance in Extreme 

Environments

Image credits: NASA
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Artist rendering of Firefly 

Aerospace Blue Ghost 

Lander

Location of MISSE-16 on International 

Space Station (ISS)

Coating 

Compositions

Exposure 

Type

Cr2O3 LEO

CrC LEO

CrC-NiCr LEO

Lunar surface

Lunar surface

• PlanetVac Instrument on Firefly Aerospace Blue 
Ghost Lander (2024)

o Mare Crisium location

o Direct exposure in lunar environment

• Optical observation throughout duration of 
exposure

• Specimens remain on Moon upon conclusion of 
mission

Mare Crisium planned 

landing site



• Cr3C2-NiCr shows notable promise as protective coating
o Exhibited lowest change in coating thickness after Taber abrasion testing

o Possessed low as-processed surface roughness and lunar dust adhesion (data not shown)*

o Yielded very low tribometry and cryogenic SPE erosion rates

• Microstructural and compositional evaluation 
o Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) of coating 

cross-sections

o Phase analysis via X-ray diffraction (XRD)

• Thermal and mechanical properties
o Quench testing

o Room temperature hardness

o Cryogenic hardness

• Extreme environment testing
o Wear testing in vacuum

o Exposure in LEO and lunar surface environments

Protective Coatings: On-going and Future 

Efforts

15
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Material technologies for use on future Artemis Missions 

(image captured during 2022 Artemis I Mission)Image credits: NASA

*Wiesner, Valerie L. et al.,  Materials Discovery for Lunar Dust Tolerant Applications, ICACC 2023, January 22-27, Daytona Beach, Fl, 2023.



Materials Development for Lunar Dust Tolerant 

Applications
• Materials that mitigate lunar dust adhesion and abrasion are needed to enable 

sustainable lunar exploration

‒ Lunar dust poses threat to current and future lunar mission success

‒ Plume-surface interactions especially challenging

• Exploring protective coatings to enable reusable lunar lander

‒ Preliminary abrasion and adhesion results suggest CrC-NiCr coatings show promise 

‒ Evaluation of additional ceramic and metallic compositions underway

• Evaluating material candidates via coupon-level assessments and environmental testing

‒ Traditional coupon-level mechanical testing

‒ Unique in-house screening capabilities, including vacuum chamber for wear testing and system 
performance as a result of simulant exposure 

• Processing and manufacturing opportunities abound

16Image credit: NASA
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18Image credit: NASA



Target Applications in Lunar Environment

• Enable sustainable human 
presence by leveraging 
materials and coating 
technologies to mitigate 
and/or manage lunar dust  

19
Image credit: NASA

‒ Lunar rover mechanisms:
gears, bearings, shafts

‒ Lander: lander legs, hatches 

‒ Habitat: joints, interlocks 

‒ Excavating equipment:
bearings, gears



• FormFactor (FRT) of America Microprof 100 Profilometer

- Data collected on pristine as-processed coating surface 

o 10 µm between data points

o 40 µm between data lines

• Ra: Average of individual heights and depths from mean elevation of profile

• Rq: Root mean square of individual heights 

and depths from mean line

➢ Al2O3-TiO2, Al2O3 and B4C had highest 

Ra and Rq values

➢ CrC, Co-Mo-Cr-Si and CrC-NiCr

possessed lowest Ra and Rq values

Surface Roughness of As-processed Coatings
20
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Material

Ra

(µm)

Rq

(µm)

Al2O3 5.77 7.27

Al2O3-TiO2 6.53 8.03

B4C 5.50 7.02

CrC 2.52 3.21

Cr2O3 4.31 5.38

CrC-NiCr 4.06 5.09

Co-Mo-Cr-Si 3.28 4.12


