Analysis of Bioburden Associated with Nonmetallic Spacecraft Materials

Chelsi D. Cassilly, Ph.D.

Planetary Protection Microbiologist Jacobs Space Exploration Group/ESSCA Space Environmental Effects Team Nonmetallic Materials and Space Environmental Effects Branch NASA/MSFC/EM41 *Chelsi.D.Cassilly@nasa.gov*

Precious Mitchell, Ph.D.

Europa De-Orbit Stage Lead Systems Engineer Orion Launch Abort System Abort Motor Lead Solid Propulsion and Pyrotechnic Devices Branch NASA/MSFC/ER62

Precious.A.Mitchell@nasa.gov

www.jacobs.com | worldwide

CCMPP 2023 Workshop – Goddard Space Flight Center – 14 September 2023

Is there life on EUROPA?

Jovian Moon: Europa

- Possible induced magnetic field
- Thin oxygen atmosphere
- Possible plumes
- Ice shell
- Surface fractures
- Liquid/slushy saltwater ocean
- Possible deep surface hydrothermal vents
- Rocky mantel
- Iron-nickel core

Europa Clipper

- Take measurements to determine if Europa could harbor conditions suitable for life.
- 40 to 50 close passes over Europa
- Expected launch: 2024

Europa Lander

- Concept for a potential future mission that would look for signs of life in the icy surface material of Europa.
- Collect samples from about 4 inches beneath the surface.
- Analyze in miniature laboratory within the robotic lander.

Europa Lander

- 1. Search for evidence of biosignatures on Europa.
- 2. Assess the habitability of Europa via *in situ* techniques.
- 3. Characterize the surface and subsurface of Europa.

MSFC Support of Europa Lander Risk Reduction

- Lander Missions commonly use solid rocket motors (SRM)
 - Risk: SRM case overpressure resulting unburned SRM materials/components encountering a planet's surface
- NASA MSFC Solid Propulsion and Pyrotechnic Devices and Non-Metallics and Space Environmental Effects Branches collaborated to investigate the bioburden of SRM materials.
- Goal was to identify and document microbial content of SRM materials to:
 - Enhance material selection process
 - Reduce possibility of exceeding allowed bioburden limit
 - Understand what microbes can survive space environments
- MSFC Tech Excellence award and Jacobs Innovation Grant funding allowed us to address this question

Where do microbes hide in SRM materials?

- Surfaces
- Encapsulated within material
- Lodged between mated areas

Embedded spores are ~10x more heat resistant than surface

NASA-Approved Bioburden Reduction

- Vapor Hydrogen Peroxide (VHP) surface
- Heat Microbial Reduction (HMR) total

ECSS-Q-ST-70-57C - DFR 1 23 January 2013

Temperature	dry surface	ambient surface	dry mated	ambient mated	uncontrolled humidity (surface, mated) and encapsulated
T (°C)	D _{value} (min)	D _{value} (min)	Dvalue (min)	Dvalue (min)	Dvalue (min)
110	155,4	268,7	310,8	537,5	1533,8
111	139,2	236,5	278,5	473,0	1392,5
112	124,8	208,1	249,6	416,2	1247,9
113	111,8	183,1	223,7	366,2	1118,3
114	100,2	161,1	200,4	322,2	1002,1
115	89,8	141,8	179,6	283,5	898,1
116	80,5	124,7	161,0	249,5	804,8
117	72,1	109,8	144,2	219,5	721,2

D-value - time required to achieve inactivation of 90% of a population of the test microorganisms under stated conditions

Must be sustained temp/humidity

Bioburden Reduction Limitations

- Some materials and missions have bioburden reduction limitations
 - Material incompatibility
 - Material integrity/aging
 - Unknown mission-related risks (deep space)
- NASA applies "specification values" to materials that cannot be bioburden reduced

NASA Specification Values

- NASA describes encapsulated bioburden specification values:
 - 30 spores/cm³ of nonelectronic materials
 - 130 spores/cm³ of mixed nonmetallic assemblies
 - 150 spores/cm³ of electronic piece parts
- Specification values are **conservative**
 - May represent an order of magnitude greater abundance than true numbers
 - May be overestimated because many materials contain toxic substances

Previous Research at JPL

- Use of destructive assays to determine true microbial load of certain spacecraft materials limited by bioburden reduction methods
 - Epoxy Adhesive (Scotch-Weld-3M 2216 B/A Gray)
 - Shielded twisted-wire pair
 - Spacecraft lubricant
 - Electrolyte components of a lithium-ion battery

Wayne W. Schubert, Laura Newlin, Shirley Y. Chung, Raymond Ellyin, Assessment of bioburden encapsulated in bulk materials, Advances in Space Research, Volume 57, Issue 9, 2016, Pages 2027-2036, ISSN 0273-1177, <u>https://doi.org/10.1016/j.asr.2016.02.012</u>.

Previous Research at JPL

- They studied total viable microorganisms (not just spores)
- Key result: ALL materials were below NASA specification values
- Future work: assess a more diverse suite of materials, as well as greater quantities

Bioburden Assessment using Destructive Assays

- We collected 14 different nonmetallic materials, consisting of six categories:
 - 1. Adhesives
 - 2. Composites
 - 3. Insulations
 - 4. Liners
 - 5. Inert propellants
 - 6. Thermal protection systems

Bioburden Assessment using Destructive Assays

- Developed a protocol based on Schubert *et al.*, 2016
- Can be updated over time and used for many materials/projects

Microbial Enumeration of Spacecraft Materials using Destructive Assays

Some Materials Pose Greater Risk than Others

Comparison of Experimental and Applied Bioburden Values

Material	Empirical Total Bioburden Estimate	NASA Specification Total Bioburden Estimate
Adhesive 1	0	360
Adhesive 2	3	360
Composite	33	360
Insulation 1	0	360
Insulation 2	0	360
Insulation 3	4	360
Insulation 4	9	360
Insulation 5	11	360
Insulation 6	3	360
Liner	0	360
Inert Propellant	1	360
TPS 1	200	360
TPS 2	747 🔸 🗕	360
TPS 3	428 🔸	

Conclusions

- The majority of materials tested demonstrated smaller total bioburden than the NASA specification values would estimate
- Applying empirically-determined estimates of bioburden can lower total accountable bioburden for certain materials
- Important to gather more data but also evaluate materials on a case-by-case basis

Ongoing Work: Identify Material-Associated Microbes

 Collected over 100 microbial isolates which are being identified using MALDI-TOF at University of Chicago, in collaboration with JPL

Ongoing Work: Space Environmental Effects on Microbial Survival

- NASA is interested in how the space environment impacts microbes:
 - Could it reduce bioburden?
 - Could it trigger resistance mechanisms?
- Study microbes to characterize potential risks:
 - Insulation-associated microbe
 - Withstood drying and radiation
 - Submitted grant for additional funding to study:
 - Cryogenic temperatures
 - Ionizing radiation
 - Ultraviolet radiation
 - Vacuum

Future Work

- DNA analysis on materials
 - Isolation of DNA directly from ground materials (MSFC)
 - Amplification/quantification of DNA (JPL)
 - Sequencing (FBI)

Acknowledgements

- Jacobs/ESSCA
 - Ashley Penton
 - Dr. Daneesh Simien
 - Samantha Marcella
 - Daniel Stephens
 - Nate Cox
 - Harold Burtts
- NASA MSFC
 - Mary Nehls
 - Dr. Precious Mitchell
 - Dr. Jarvis Caffrey

- Todd Schneider
- Dr. Peter Bertone
- Dr. Erin Hayward
- Jason Vaughn
- Patrick Lynn
- Jet Propulsion Laboratory
 - Lisa Guan
- Federal Bureau of Investigation
 - Michael Brandhagen

Funding:

- Europa Lander
 Risk Reduction
- MSFC Technical Excellence Award
- Jacobs Innovation grant

Questions?

Backup

 The harshness of the procedure could cause a drop in viability of microbes by 2 orders of magnitude

Comparison Between Experimental and Applied Bioburden Values

Material	Empirical Total Bi Estimate (CORRI	oburden ECTED)	NASA Specification Total Bioburden Estimate
Adhesive 1	0		360
Adhesive 2	300		360
Composite	3,300		360
Insulation 1	0		360
Insulation 2	0		360
Insulation 3	400		360
Insulation 4	900		360
Insulation 5	1,100	•	360
Insulation 6	300		360
Liner	0		360
Inert Propellant	100		360
TPS 1	20,000	•	360
TPS 2	74,700		360
TPS 3	42,800	+	360