

Far-UVC light to reduce microbial bioburden during spacecraft assembly

David Welch

Columbia University Irving Medical Center Center for Radiological Research

Acknowledgements

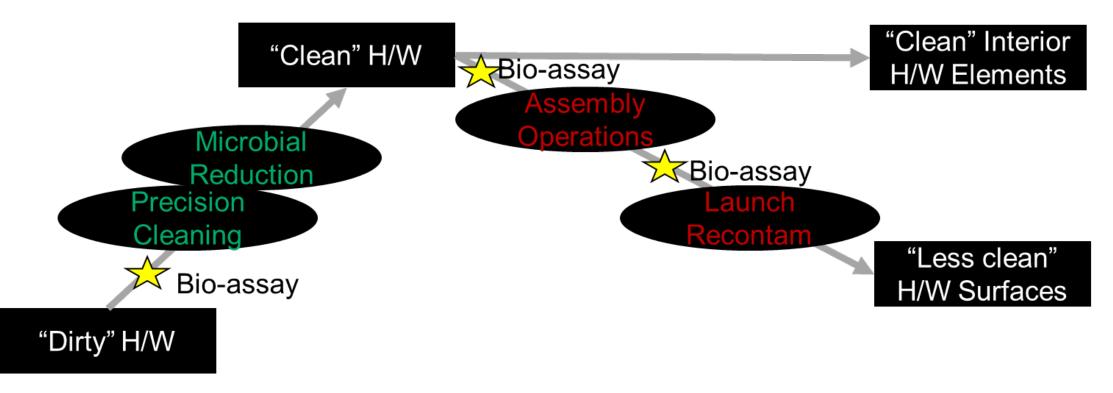
COLUMBIA COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Columbia:

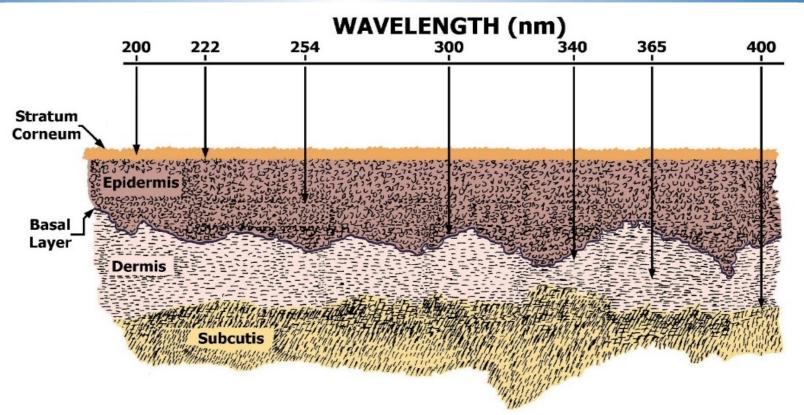
- Dr. Manuela Buonanno
- Dr. David Brenner
- Camryn Petersen
- Raabia Hashmi
- Igor Shuryak

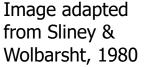
JPL Pilot Project Award NASA ROSES Award 80NSSC22K0211

JPL:


- 🗕 Lisa Guan
- Akemi Hinzer
- Joshua Urbano

A role for far-UVC


Current methods for microbial reduction do not mitigate ongoing microbial contamination associated with assembly and launch activities



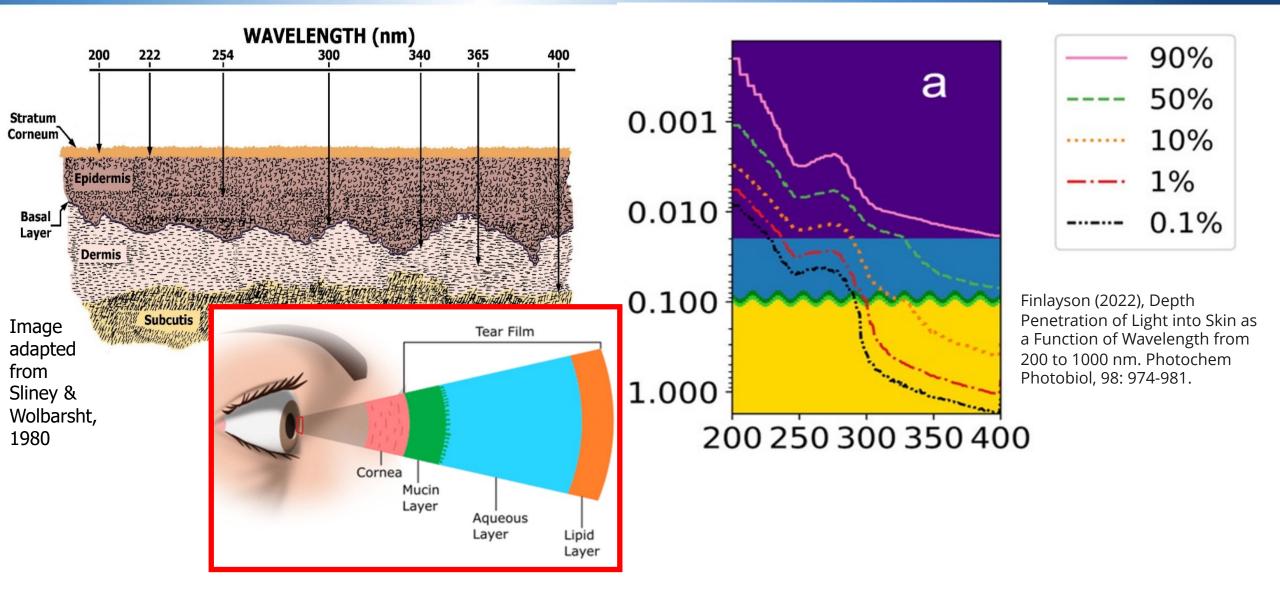
What is far-UVC?

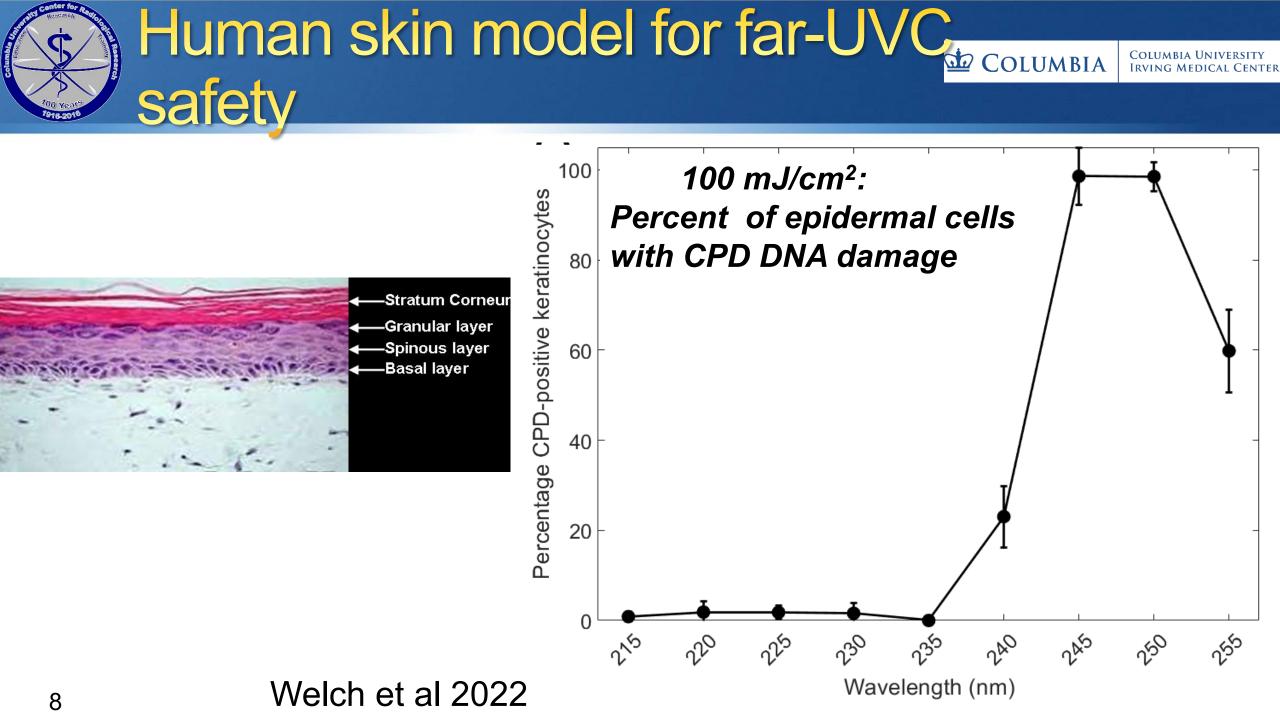
COLUMBIA COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Far-UVC sources are limited

- KrCl excimer lamps at 222 nm filtered for safety!
- LED technology for far-UVC is still on the horizon

Is it safe?Does it work?


Far-UVC safety


- Biophysical principals
- Growing number of peer-reviewed studies
- Existing national and international regulatory frameworks

COLUMBIA UNIVERSITY

COLUMBIA

TOO Years

Long-term far-UVC safety

- Commercial 222 nm filtered excimer lamps
- 96 hairless SKH-1 mice given continuous daily exposures: (0, 50, 125, 400 mJ/cm² / day)
- 8 hours / day, 5 days / week
- 66 weeks total

Photochemistry and Photobiology, 2023, 99: 168-175

Welch et al 2023

Research Article

No Evidence of Induced Skin Cancer or Other Skin Abnormalities after Long-Term (66 week) Chronic Exposure to 222-nm Far-UVC Radiation David Welch^{1,†}* , Norman J. Kleiman^{2,†}, Peter C. Arden², Christine L. Kuryla², Manuela Buonanno¹, Brian Ponnaiya¹, Xuefeng Wu¹ and David J. Brenner¹

¹Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
²Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York

Received 16 March 2022, accepted 23 May 2022, DOI: 10.1111/php.13656

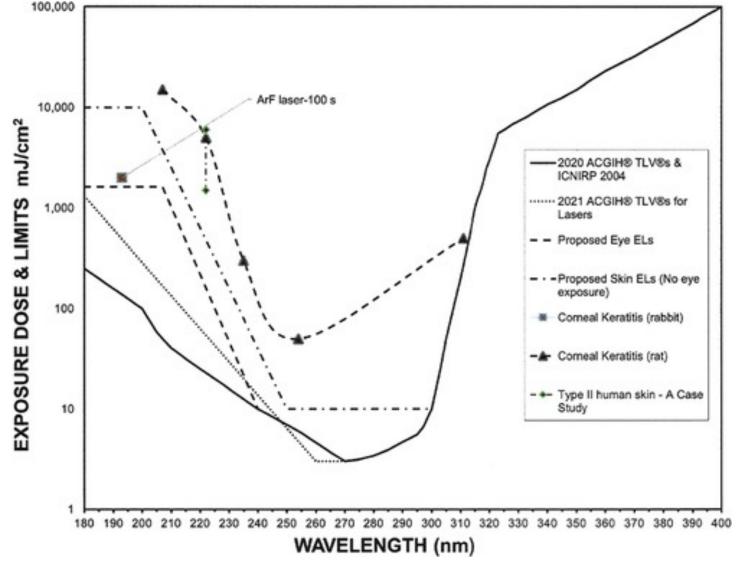
ABSTRACT

Far-UVC radiation, typically defined as 200–235 nm, has similar or greater anti-microbial efficacy compared with con-

acute damage to the skin and eye (2,3). By contrast, there is now compelling evidence that far-UVC radiation, commonly defined as wavelengths between 200 nm and 235 nm, is likely to be safer for direct human exposure (4-8), and also exhibits similarly

Safety Recommendations

- American Conference of Governmental Industrial Hygienists (ACGIH)
- Threshold Limit Values (TLV)


222-nm values <u>ACGIH (pre 2022) &</u>

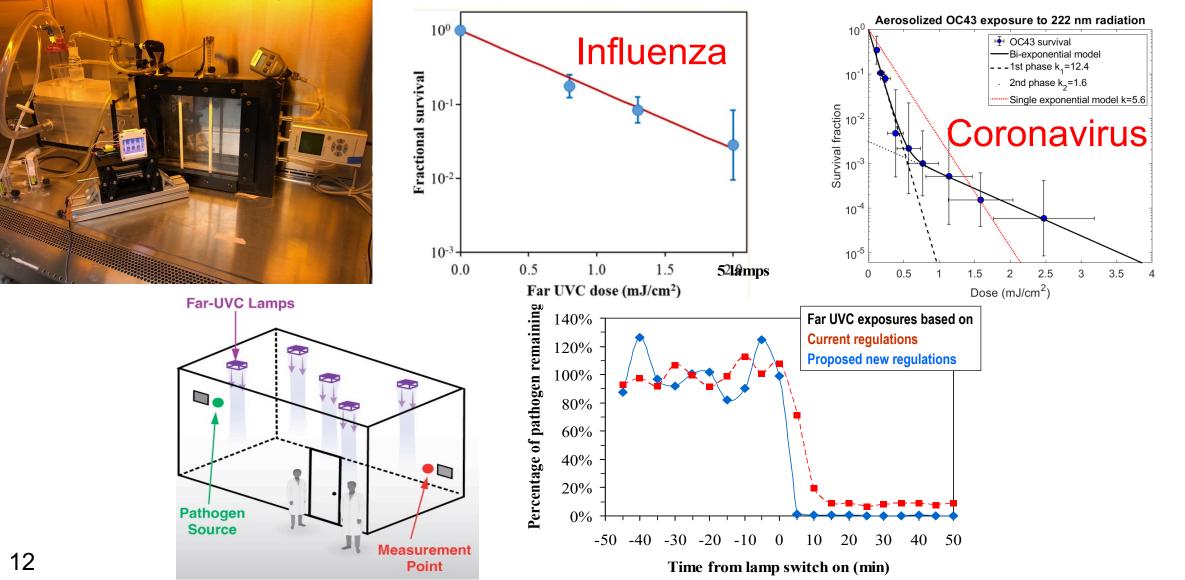
<u>ICNIRP</u>

23 mJ/cm²/ 8-h day

ACGIH (2022)

Eye: 160 mJ/cm²/8-h day Skin: 480 mJ/cm²/8-h day

COLUMBIA COLUMBIA UNIVERSITY IRVING MEDICAL CENTER


COLUMBIA COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Is it safe?Does it work?

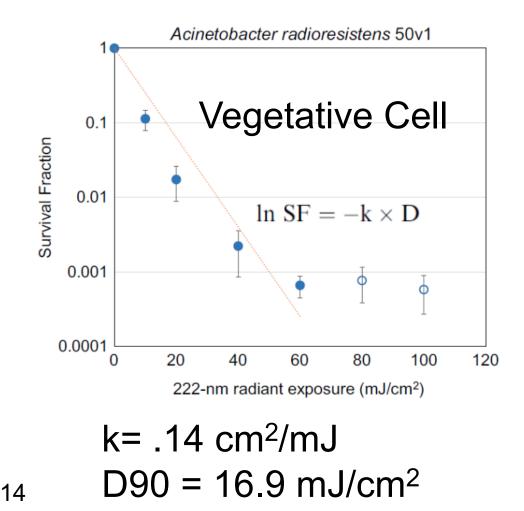
Far-UVC inactivation of aerosolized viruses and bacteria

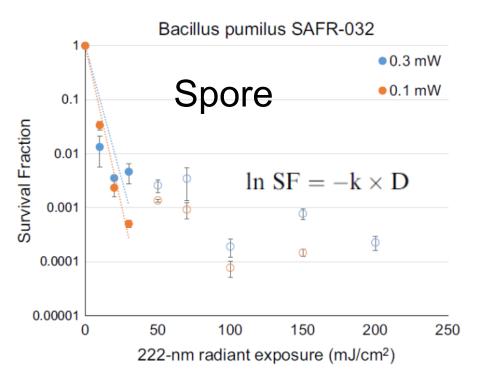
COLUMBIA UNIVERSITY

IRVING MEDICAL CENTER

Far-UVC efficacy testing for Planetary Protection

Test microbes:


- Acinetobacter radioresistens 50v1 (vegetative cells)
 - Isolated from cleanroom surfaces where the Mars Exploration Rovers were built


COLUMBIA

- Previously shown to tolerate desiccation, hydrogen peroxide, and radiation
- Bacillus pumilus SAFR-032 (spores)
 - Isolated from the spacecraft assembly facility at JPL
 - Previously shown resistance to desiccation and UV

Far-UVC efficiently inactivates COLUMBIA COLUMBIA

Expose on aluminum coupons using a filtered KrCl lamp (222 nm)

 $k=.23 \text{ cm}^2/\text{mJ}$ D90 = 10.2 mJ/cm²

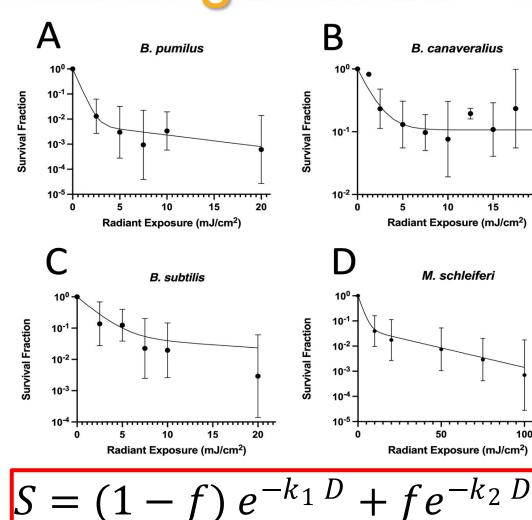
Testing hardy microbes

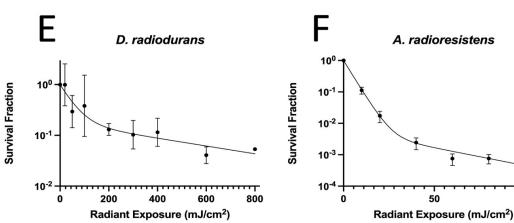
- Bacillus pumilus SAFR-032 (vegetative and spore)
- Bacillus subtilis (vegetative and spore)
- Deinococcus radiodurans (vegetative)
 - Not recovered from SAF yet
 - Polyextremophile (cold, dehydration, vacuum, and acid), very radiation resistant, including ionizing radiation (>>5 kGy)

COLUMBIA

- Microbacterium schleiferi (vegetative)
 - Isolated from SAF
 - Alkalophilic and high UV (254 nm) resistance
- Bacillus canaveralius 29669 (vegetative and spore)
 - Isolated from a spacecraft cleanroom environment in KSC
- ¹⁵ Highly tolerant to dry heat

Far-UVC efficacy for vegetative cells.


10


50

15

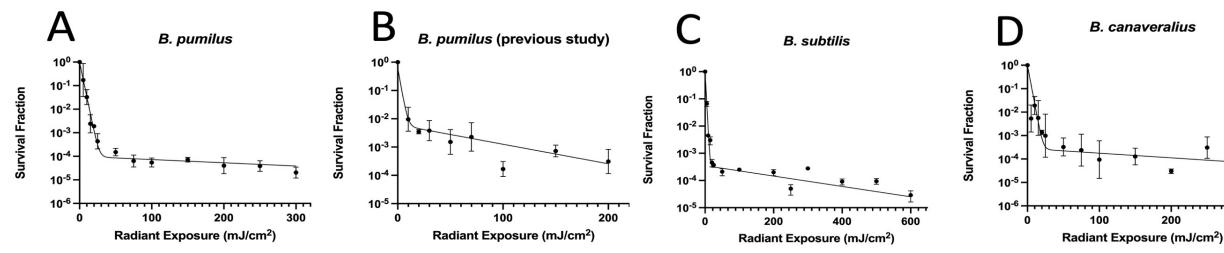
20

100

COLUMBIA

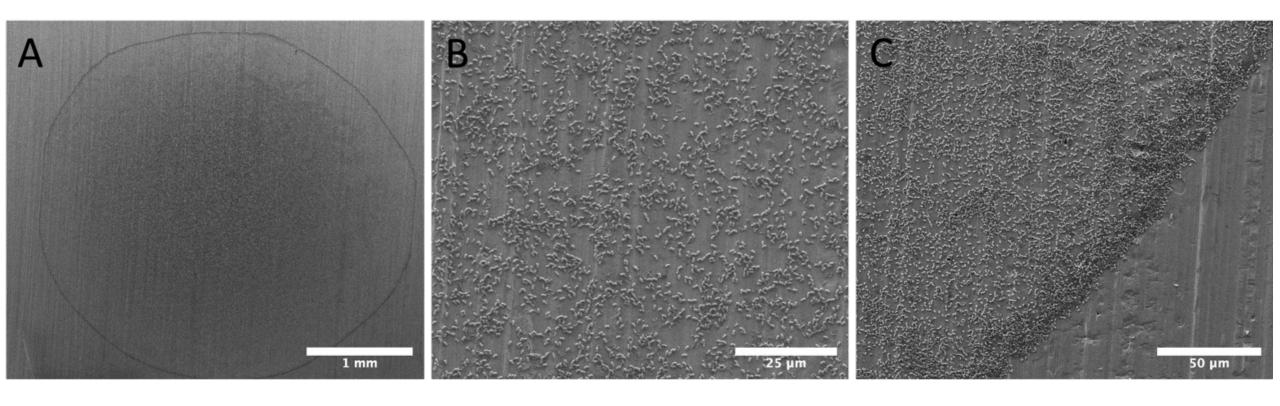
COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

100


Species	$k_1 \pm SE$ (cm ² /mJ)	$k_2 \pm SE$ (cm ² /mJ)	D ₉₀ (mJ/cm ²)	f ± SE
B. pumilus	1.9 ± 6.8	0.11 ± 0.099	1.2	$6.8 \times 10^{-3} \pm 7.6 \times 10^{-3}$
B. canaveralius	0.72 ± 0.54	0.0 ± 0.038	3.2	0.11 ± 0.12
B. subtilis	0.57 ± 0.23	0.045 ± 0.14	4.0	0.058 ± 0.10
M. schleiferi	0.45 ± 0.42	0.036 ± 0.013	5.1	0.051 ± 0.046
†A. radioresistens	$0.22 \pm 3.3 \mathrm{x} 10^{-3}$	$0.026 \pm 1.4 \mathrm{x} 10^{-3}$	11	$6.1x10^{-3} \pm 6.9x10^{-4}$
D. radiodurans	$0.021 \pm 7.2 \mathrm{x} 10^{-3}$	$1.8 \times 10^{-3} \pm 1.0 \times 10^{-3}$	112	0.18 ± 0.097

16

Far-UVC efficacy for spores



Species	$k_1 \pm SE$ (cm ² /mJ)	$k_2 \pm SE$ (cm ² /mJ)	D ₉₀ (mJ/cm ²)	f ± SE
B. subtilis	0.54 ± 0.031	$4.4x10^{-3} \pm 5.5x10^{-4}$	3.8	$3.5 x 10^{-4} \pm 7.0 x 10^{-5}$
†B. pumilus	0.48 ± 0.070	$0.016 \pm 2.5 \times 10^{-3}$	5.9	$6.3x10^{-3} \pm 1.7x10^{-3}$
B. canaveralius	0.38 ± 0.045	$4.6 x 10^{\text{-3}} \pm 1.7 x 10^{\text{-3}}$	6.1	$2.8 \times 10^{-4} \pm 1.3 \times 10^{-4}$
B. pumilus	0.34 ± 0.015	$3.2x10^{-3} \pm 6.1x10^{-3}$	6.8	$1.0x10^{-4} \pm 2.0x10^{-5}$

COLUMBIA COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Far-UVC efficacy summary

Species	Cell type	$k_1 \pm SE$ (cm ² /mJ)	$k_2 \pm SE$ (cm ² /mJ)	D ₉₀ (mJ/cm ²)	f ± SE
B. pumilus	Vegetative	1.9 ± 6.8	0.11 ± 0.099	1.2	$6.8 \times 10^{-3} \pm 7.6 \times 10^{-3}$
B. canaveralius	Vegetative	0.72 ± 0.54	0.0 ± 0.038	3.2	0.11 ± 0.12
B. subtilis	Spore	0.54 ± 0.031	$4.4 \mathrm{x} 10^{-3} \pm 5.5 \mathrm{x} 10^{-4}$	3.8	$3.5 x 10^{\text{-4}} \pm 7.0 x 10^{\text{-5}}$
B. subtilis	Vegetative	0.57 ± 0.23	0.045 ± 0.14	4.0	0.058 ± 0.10
M. schleiferi	Vegetative	0.45 ± 0.42	0.036 ± 0.013	5.1	0.051 ± 0.046
†B. pumilus	Spore	0.48 ± 0.070	$0.016 \pm 2.5 \times 10^{-3}$	5.9	$6.3x10^{-3} \pm 1.7x10^{-3}$
B. canaveralius	Spore	0.38 ± 0.045	$4.6 x 10^{-3} \pm 1.7 x 10^{-3}$	6.1	$2.8 \times 10^{-4} \pm 1.3 \times 10^{-4}$
B. pumilus	Spore	0.34 ± 0.015	$3.2x10^{-3} \pm 6.1x10^{-3}$	6.8	$1.0x10^{-4} \pm 2.0x10^{-5}$
<i>†A. radioresistens</i>	Vegetative	$0.22 \pm 3.3 \times 10^{-3}$	$0.026 \pm 1.4 \mathrm{x} 10^{-3}$	11	$6.1 x 10^{-3} \pm 6.9 x 10^{-4}$
D. radiodurans	Vegetative	$0.021 \pm 7.2 \times 10^{-3}$	$1.8 \times 10^{-3} \pm 1.0 \times 10^{-3}$	112	0.18 ± 0.097

COLUMBIA

Columbia University Irving Medical Center

Exploring material effects

Spacecraft:

- Aluminum
- Kapton polyimide
- Stainless steel
- Black and white paints
- Facility:
 - Flooring
 - Formica countertops
 - PVC sheets

COLUMBIA

COLUMBIA UNIVERSITY IRVING MEDICAL CENT

COLUMBIA COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Thank you

Funding support from: CDC NIOSH R010H012312 NASA 80NSSC22K0211 NASA 80NSSC23K1107 Good Venture Foundation Open Philanthropy Empire State Biodefense Commercialization Fund Columbia University Urban Tech Award

Questions?