

High Strength Aluminum Alloy for Additive Manufactured Space Optical Instruments

2023 Contamination, Coatings, Materials, and Planetary Protection Workshop

Authors: Walter Zimbeck¹, Zach Post¹, Steven Storck¹, Robert Mueller¹, Salahudin Nimer¹, William Swartz¹, Benjamin Stewart¹, Frank Morgan¹, Floris van Kempen², Gerard Otter², S.J. van den Boom²

¹Johns Hopkins University Applied Physics Laboratory ² The Netherlands Organisation for Applied Scientific Research (TNO)

APL in Brief

What are we?

- Research division of Johns Hopkins University
- University affiliated research center

Who are we?

- Technically skilled and operationally oriented
- Objective and independent

Who are our sponsors?

- Department of Defense
- NASA
- Department of Homeland Security
- Intelligence Community

What is our purpose?

 Critical contributions to critical challenges

Laboratory Employees: ~8,100 staff members

APL

APL Space Missions Legacy

MESSENGER Launched: 1996

ACE Launched: 1997

TIMED Launched: 2001

NEAR Launched: 2004

New Horizons Launched: 2006

STEREO Launched: 2006

icidues metal Ain hardwa

CHAPS-D Innovations

High Resolution, Science Quality Trace Gas Measurement from a small platform

Metal Additive Manufacturing

- Optical housings w/ integrated baffles
- Lightweight latticed mirror

Topology Optimized Structures

CHAPS Optical System Design & Requirements

- Freeform optics
- A-thermal design
- Optical elements mounted directly on assembly tolerances
- Alignment of the detector in 6 DoF as compensator
- Two part integrated housing: Telescope & Spectrometer
- Optical components stable within ±15 µm in x-, y-, or z-direction under gravity release and a 10K thermal gradient

CHAPS-D Material Requirements

	Property	Method	Weight	Notes	
Mechanical-	Tensile Ultimate Strength (MPa)		7	> 450	
	Tensile Yield Strength (MPa)	Mini-Tensile Bars,	3	> 400	
	Tensile Modulus (GPa)	ASTM E8	3	> 70	
	Tensile Elongation (%)		2	> 5	
	Minimum Wall Thickness (undistorted)	Test plate	3	Integrated baffles	
	Thermal Stress (mm deflection)	Stress combs	3	Distortion concerns in TO structure	
Print -	Down-facing Surface Accuracy	Calipers	3	Reduced accuracy	
Quality	Surface Roughness (vertical wall)	ХСТ	2	Effects clean-ability and strength	
	Minimum Hole Diameter (mm)	Pin Gauge	2	Small holes for venting, fiber optics	
Post Processing	Compatibility with NiP Plating & SPDT	NiP Plating & SPDT	7	Mirror coating compatibility	
	Compatibility with Chrome Conversion Coating and Optical Black Paint	Coating and Paint adhesion tests	4	Housing coating compatibility	
Thermal -	CTE (µm/m/K)	ASTM E228, Dilatometer	10	Similar to AI 6061 cubesat structure	
	Thermal Conductivity (W/mK)	ASTM E1461 Flash	4	High conductivity minimizes gradients	

APL

Additive Aluminum Alloy Candidates

Alloy	Pros	Cons
AlSi10Mg	Widely used AM alloy	Low YS, high Si (plating?), stability?
6061 RAM2	Compatible with 6061 cubesat, low roughness	Minor increase in YS
A20X	High tensile properties	Unknown other properties
Scalmalloy	High tensile properties	Unknown other properties
7A77	Highest tensile properties	HIP recommended, Unknowns

APL,

Test Plan Step 1: Laser Parameter DOE of Each Material

• 75 Laser Parameter Sets

- Variables: laser power, exposure time and point distance (scan speed), hatch spacing
- X-ray Computed Tomography (XCT): porosity and surface roughness (vertical wall)
- Mini-Tensile Bars (2mm gauge section): YS, UTS, elongation
- Select 7 best parameter sets for Step 2.

Build Plate with 75X each XCT cylinders and mini-tensile bars

6mm dia. x 10mm tall cylinder

Test Plan Step 2: Printability Assessment

- Using Best 7 Parameter Sets from Step 1
 - A. Stress combs (residual stress)
 - B. Minimum hole diameter
 - C. Thin wall distortion
 - D. Down-facing surface quality
- Down select best parameter set for each material

Test Plan Step 3: Mechanical & Thermal Properties

- Test Best Parameter Set for each material.
 - Quantity 6 of each test sample type
- Tensile Properties
 - ASTM E8 flat specimens
 - Vertical (A), 45° (B), Horizontal (C)
- Thermal Conductivity (ASTM E228, Flash Diffusivity)
 - 10mm squares x 1.5mm thick
 - Vertical (D), Horizontal (E)
- Coefficient of Thermal Expansion (CTE, ASTM E1461)
 - Rods 3mm dia x 10mm long
 - Vertical (F), Horizontal (G)
- Paint Adhesion Test
 - 100mm x 100mm x 1.5mm plates (H)
- NiP and Single Point Diamond Turning (SPDT)
 - 50 mm dia. x 10 mm thick disks
 - Mirror post-processing compatibility (I)

250 mm

Test Results

	Property	Weight	Target	A20X	Scalmalloy	7A77	6061 RAM2
Mechanical -	Tensile Ultimate Strength (MPa)	3	> 450	410	477	478	317
	Tensile Yield Strength (MPa)	7	> 400	324	439	466	291
	Tensile Modulus (GPa)	3	> 70	110	70	74	90
	Tensile Elongation (%)	2	> 5	6.2	12.4	1.3	9.0
Print Quality	Minimum Wall Thickness (mm)	3	0.5	0.5	0.5	1	
	Thermal Stress (mm deflection)	3	< .08	.067	.078	.097	
	Down-facing Surface Accuracy (mm)	3	< +.50	+.57	+.51	+.64	+.35
	Surface Roughness (Ra, µm)	2	< 20	17.7	19.2	33.5	
Post Processing – Compatibility	Compatibility with NiP Plating & SPDT	7	PASS	PASS	PASS	FAILED	
	Compatibility with Chrome Conversion Coating and Optical Black Paint	4	PASS	PASS	PASS	PASS	PASS
Thermal	CTE (µm/m/K)	10	22 - 25	23.0 +/- 1.3%	24.5 +/- 1.0%		
	Thermal Conductivity (W/mK, 25C)	4	> 70	101	81.5		

Topology Optimized Design Flow

Optical system in cubesat frame

Add keep-free zones, interfaces to frame

Iteration 0

Add light-tight shell, baffles, and access openings

4.8M element mesh (1mm resolution)

APL

CHAPS-D Breadboard Fabrication

- 1. Add machining stock to precision surfaces in CAD model
- 2. Choose build orientation and generate support structure
- 3. 3D Print
- 4. Heat Treat
- 5. Remove Parts from Build Plate & Remove Supports from Part
- 6. Thermal Stabilization Treatment
 -70C to 100C, 8X cycles
- 7. Machine Precision Surfaces
- 8. Chromate Conversion Coating
- 9. Breadboard Assembly
- 10. CMM Inspection (pre-test)
- 11. Vibration Testing & CMM
- 12. Thermal Testing & CMM

CHAPS-D Breadboard Assembly & Testing

- Vibration tested to GEVS levels
 - No visible damage to housing
 - No changes to resonant frequency
 - Some mirrors shifted during vibration testing, 30-60 µm
 - Larger than expected, but analysis suggests no significant impact on performance
- Thermal cycled
 - -20°C to +60°C for 6 cycles
 - Post-Test CMM showed maximum shifts < 3 microns

units		PreTCavg	Post TC avg	Pre-Post TC
	IM1			
deg	IM1 clocking	-0.06405	-0.064	-5E-05
deg	IM1 Backside Proj Ang 1	-2.60305	-2.60305	0
deg	IM1 Backside Proj Ang 2	-0.08185	-0.08195	1E-04
mm	IM1X	135.1242	135.1271	-0.0029
mm	IM1Y	-98.5006	-98.5028	0.0022
mm	IM1Z	-12.70845	-12.70755	-0.0009

Scalmalloy AM Alloy Meets Environmental Stability Requirements for Optical Instruments

Scalmalloy Mirrors

- Solid and lightweighted mirrors printed, heat treated, and pre-machined at APL
- TNO completed final machining, NiP plating, single point diamond turning, magneto rheological polishing and inspection

Scalmalloy AM Alloy Compatible with Mirror Fabrication Process

Conclusions and Next Steps

- A Quantitative Material Selection Framework was developed and utilized to determine the best AM aluminum alloy to use for space optical instruments
 - Framework consists of weighted factors in four categories
 - Mechanical
 - Thermal
 - Print quality
 - Compatibility with post processing steps
 - Scalmalloy selected from four candidates
- Scalmalloy used to 3D Print CHAPS-D Housings and Mirrors
 - Environmental testing of breadboard assembly proved Scalmalloy optical stability
 - 3D Printed mirror blanks compatible with mirror processing steps
- Next Steps
 - Minor updates to housing designs and fabricate flight hardware
 - Aircraft flight test planned for Summer 2024

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

