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Outline:
• Introduction

• Applications of particle redistribution
• Existing methodologies – current 

assumptions for particle redistribution

• Force modeling
• Relevant contribution typically modeled
• Mechanisms for particle/spore removal

• Validation work: 
• Poiseuille Flow
• Turbulent Boundary Layer
• Spore Adhesion

• Ongoing work
• Additional particle forces
• Modeling improvements
• Additional validation
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Applications of particle redistribution

• Rocket fairings quickly depressurize during launch ascent: 
This generates a transient flows around the payload.

• Fairing and payload surfaces carry particulate and biological 
material. Depressurization-induced flows can:

• Detach from fairing and payload surfaces,
• Transport throughout the fairing environment, and
• Redeposit onto other surfaces.

• Space exploration missions often have stringent Contamination 
Control (CC) and Planetary Protection (PP) requirements related 
to particulate deposition.

• Contamination Control: Instrumentation and spacecraft hardware 
may be sensitive to the presence of particulate for proper operation 
(i.e. optical, thermal, and mechanical systems).

• Planetary Protection: Biologics can redistribute onto the payload, 
which may risk forward contamination of the destination of interest 
impacting mission science objectives (i.e. biosignatures).
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Applications of particle redistribution

• Rocket fairings quickly depressurize during launch ascent: 
This generates a transient flows around the payload.

• Fairing and payload surfaces carry particulate and biological 
material. Depressurization-induced flows can:

• Detach from fairing and payload surfaces,
• Transport throughout the fairing environment, and
• Redeposit onto other surfaces.

• Space exploration missions often have stringent Contamination 
Control (CC) and Planetary Protection (PP) requirements related 
to particulate deposition.

• Contamination Control: Scientific instrumentation may be sensitive 
to the presence of particulate for proper operation.

• Planetary Protection: Biologics can redistribute onto the payload, 
which may risk forward contamination of the destination of interest, 
and may impact the ability to unambiguously detect biosignatures. 
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• Existing methodologies assume particulate 
and/or biologic loading on all surfaces and 
stochastically redistribute them throughout the 
fairing.

• Physics based approaches are required to 
make predictions of particle and spore 
redistribution.
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Traditional force modeling: Adhesion modeling
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• Forces typically modeled (7-10) 
• Drag force: Variety of models exist to account for 

different regimes of flow (Stokes (3,11), Schiller-
Naumann (11), Clift (11), White (12), Loth (13), etc.)

• Friction force
• Lift force
• Gravitational force
• Adhesion models (smooth surfaces) – 

• JKR Model (Johnson, Kendall, & Roberts; 1971) (14) 
– Larger particle adhesion

• DMT Model (Derjaguin, Muller, Toporov; 1975) (15) – 
Smaller particle adhesion

• Maugis Model (Maugis; 1992) (16) – Between small 
and large particulate, no closed form model.

• Surface roughness can also have a significant 
effect on particle adhesion and resulting 
forces:

• Cheng et al.; 2002 (17)

• You & Wan; 2013 & 2014 (18,19) – Adhesion and 
capillary forces

• Rabinovitch; 2000 & 2002 (20,21) – Focus on 
capillary forces

Experiments from Mikellides et al., 
2020(a) (9) and simulations from from 

Mikellides et al., 2020(b) (10) 1
2
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• Cheng-Ibrahim Model8,17 à
• Based on surface roughness theory, where one 

approximates the “fraction” of overlapping asperities 
through prior fits from Cheng (2002)17.

• You and Wan Model18,19 à
• Directly model the variation in surface asperities as a 

convolution between two probability distributions, 
one for the particle surface and the other for the 
substrate.

• Note: Asperity being a rough element or protrusion 
on a surface and or particle.
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Traditional force modeling: Adhesion modeling

• Particles experience a wide range of forces from a surrounding flow (i.e. drag, 
unsteady effects, resolved pressure gradients, etc.) (5,6)

• Looking at literature we can simplify the forces being evaluated for a particle 
deposited on a surface. This results in a series of removal mechanisms. From 
Ibrahim et al.; 2003 & 2008 and Mikellides et al.; 2020: (7,8,10)

7

Experiments from Mikellides et al., 
2020(a) (9) and simulations from from 

Mikellides et al., 2020(b) (10)
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Traditional force modeling: Adhesion modeling
• If we assume that deposited particles are not influencing the surrounding flow 

(one-way coupling assumption), we can directly determine the conditions for 
which particles will be removed from surfaces!

• Particles experience a wide range of forces from a surrounding flow (i.e. drag, unsteady 
effects, resolved pressure gradients, etc.) (5,6)

• Looking at literature we can simplify the forces being evaluated for a particle deposited 
on a surface. This results in a series of removal mechanisms. From Ibrahim et al.; 2003 
& 2008 and Mikellides et al.; 2020: (7,8,10)

8

Experiments from Mikellides et al., 
2020(a) (9) and simulations from from 

Mikellides et al., 2020(b) (10)

• Assumptions à
• Spherical particles – Forcing models more mature
• One-way coupling between particle and flow – 

• Flow only impacts particle, particle doesn’t affect the 
surrounding flow

• More reasonable for low particle concentrations and 
small/light particles (see Stokes number)

• Particles do not interact with surrounding particles – 
• No saltation-like behavior, reasonable for low particle 

concentrations.
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Model evaluation: Poiseuille flow
• Mikellides et al.; 2020(a) (9) describes experiments performed with a laminar 

flow device that evaluated the conditions by which particles were removed from 
a substrate of interest.

• The flow configuration described is known as a Poiseuille flow, which has a 
known flow solution for Navier-Stokes! 

9

See fluid dynamics textbooks, such as Pozrikidis (2016) (22) for 
details on derivation and similar flow descriptions.

Steady-state CFD simulation of a 
Poiseuille flow
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Model evaluation: Poiseuille flow

• Stochastic analysis (7,8,10)

- Given flow/particulate parameters, 
stochastically sample particles to 
determine removal of particulate, given 
set of models.

• CFD based analysis (4,10)

- Interpolation of information to particle is 
based on local sampling. 

- This evaluates the performance of the 
code when particles will have lots of 
information to sample from.

10
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Experimental comparison: 𝑑! = 70 ± 5	𝜇𝑚
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• Particles (with 𝑑! = 70𝜇𝑚 & 𝜎 = 5𝜇𝑚) are randomly sampled. 
Experimental data is from Mikellides et al.; 2020(a) (9). 

• CFD performed with near wall grid refinement (prism layers)
The following models are used for forcing:

• Drag: Clift (11)

• Adhesion: JKR (14)

• Material properties: Glass spheres on glass substrate

• The particle removal fraction (PRF) is then evaluated for 𝑁! = 5000 particles 
that are deposited onto the theoretical surface of interest:

CFD + Cheng-Ibrahim Model
CFD + You and Wan Model

Stochastic Cheng-Ibrahim Model
Stochastic You and Wan Model
Stochastic Smooth Surface

: Mikellides et al. (2020)
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Model evaluation: Turbulent boundary layer

• Comparisons to experiments 
from Ibrahim et al. (2008)8 
where particles are removed 
from a substrate through a 
turbulent flow channel.

• Two comparisons à
• Approximations of flow 

conditions from turbulent 
boundary layer theory.

• CFD based on temporally 
developing boundary layer.

12

CFD simulation of a temporally-
developing boundary layer used 

for particle removal testing.
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Model evaluation: Turbulent boundary layer
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CFD + Cheng-Ibrahim Model
CFD + You and Wan Model

Sampling frequency 
variation of datasets:

Δ𝑡 = 0.1	𝑠
Δ𝑡 = 0.5	𝑠

Δ𝑡 = 1.0	𝑠

: Ibrahim et al. (2008)8

Stochastic Cheng-Ibrahim Model
Stochastic You and Wan Model
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Model evaluation: Spore adhesion

14

• Comparisons to experiments 
from Mercier-Bonin et al. 
(2011)23 where spores are 
removed from a water driven 
shear flow (Poiseuille flow)

• Two spores for comparisons 
(against experiment and 
proposed model) à

• Bacillus cereus
• Bacillus pumilus

Note: Spore species impacts adhesion (shape, size, hair-like 
structures, behavior in different environments, etc.) 

© 2023 California Institute of Technology. Government sponsorship acknowledged.
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Model evaluation: Spore adhesion
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• Comparisons to experiments 
from Mercier-Bonin et al. 
(2011) where spores are 
removed from a water driven 
shear flow (Poiseuille flow)

• Two spores for comparisons 
(against experiment and 
proposed model) à

• Bacillus cereus
• Bacillus pumilus 

• Proposed modeling approach à
• Apply a contact mechanics approach for 

adhesion à biochemical adhesive properties 
are highly spore and environmental 
dependent

• Fit the contact mechanics in terms of mean 
and standard deviation of spore surface 
energy
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Model evaluation: Spore adhesion

16

Bacillus cereus Bacillus pumilus

Stochastic: Mercier-Bonin slip model  
Stochastic: Mercier-Bonin rolling model 

Stochastic: Surface energy fit, You and Wan Model
Experiment: Mercier-Bonin et al. (2011)23
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Conclusions
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• General overview; importance of particle adhesion and removal 
modeling:

• Applicable to Planetary Protection and Contamination Control
• Provided brief overview of general force decompositions for Lagrangian 

particle tracking and adhesion/removal modeling
• Discussion on model selection for adhesion and removal analysis

• Models are highly sensitive to material property variation (i.e. surface 
roughness, Young’s modulus, Poisson’s ratio, surface energy)

• Showed the ability to simulate particle removal with surface adhesion:
• Demonstrated for different flow conditions
• Demonstrated the ability to capture particle removal with adhesion 

modeling routines
• Potential modeling procedure to capture arbitrary spore species adhesion 

forces
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CFD simulation of a temporally-
developing boundary layer used 

for particle removal testing.

Future work

18

• Additional validation:
• Other characteristic/canonical flows
• Expand evaluation of spore removal from surface

• Force modeling:
• Vibrational motion of particulate on surfaces
• Additional models to improve transport estimations
• Probabilistic particle removal – The surface energy 

of particles and substrates isn’t always constant

• Improvements to modeling can be made:
• More spore data for shear-based removal
• Data for particle removal with atomic force 

microscopy (AFM) does exist; however, should be 
expanded to improve modeling capabilities

• Temperature dependence
• Material property information

• Density, Young’s modulus, modulus of elasticity, etc. 
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Traditional force modeling: Lagrangian representation

22

• The force on a Lagrangian particle is characterized by the integration of resolved stresses along the surface 
of a particle:

𝐹 = #
!
−𝑝I	 + 𝜎 𝑑𝑆	

• Traditional definitions, such as the BBO and Maxey-Riley equations, were derived from phenomenological 
and disturbed versus undisturbed flow arguments respectively.

• These forcing definitions typically assume low Reynolds number creeping flow; however, provide insight 
into the forces that arise when considering flow over a particle.

• Transport equations for the i-th Lagrangian particle (excluding heat exchange):

𝑑𝒙"
($)

𝑑𝑡
= 𝒗"

($)

𝑚"
($) 𝑑𝒗"

($)

𝑑𝑡
= 𝐅&'()*+',

$ +	𝐅,&-.
$ + 𝐅+/

$ + 𝐅$/
$ + 𝐅0),1

$ + 𝐅*$23
($) +	𝐅4)**

($)

𝐼"
𝑑𝜔"

($)

𝑑𝑡
=3

5

𝑑"
2
𝒏$5 	×	𝑓3,5→$	4)*

• 𝒙"
($), 𝒗"

($),	and	𝜔"
($) are the position velocity and angular velocity respectively

•  𝐼" is the moment of inertia for a sphere 𝐼" = 𝑚"𝑑"9
• 𝒏$5 is the outward facing normal between particle i to particle j (or in this case wall j)
• 𝑓3,5→$	

4)*  is the tangential component of collisions between particle i and object j
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Traditional force modeling: Lagrangian representation
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• The force on a Lagrangian particle is characterized by the integration of resolved 
stresses along the surface of a particle:

𝐹 = $
!
−𝑝I	 + 𝜎 𝑑𝑆	

• Traditional definitions typically assume low Reynolds number creeping flow; 
however, provide insight into the forces that arise when considering flow over a 
particle: (2,3,5,6)

• Resolved Forces – Viscous and pressure forces that arrive from the total stress tensor.
• Aerodynamic Drag – Opposition of motion due to relative flow. 
• Viscous Unsteady – Basset history effect associated with boundary layer formation.
• Inviscid Unsteady – Added mass due to displacement of “fluid.”
• Lift - Shear or rotational induced.
• Body Forces - External forces (i.e. gravity, electromagnetic, etc.)
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Example: Poiseuille flow
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• CFD simulations performed using commercial software (StarCCM+)
• Boundary conditions:

• No-slip walls on top and bottom of domain
• Periodic in streamwise direction
• Cross stream boundaries are symmetry planes (no variation expected in cross-stream direction)

• Particle tracking is performed with an in-house one-way coupled Lagrangian particle 
tracking code (JPL SPLAT)

07/22/2022

CFD simulation of a Poiseuille flow 
used for particle removal testing.
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Existing methods predict particle redistribution

• Stochastic redistribution approach: Assume particulate and/or biologic loading on all 
surfaces and stochastically redistribute them throughout the fairing.(1)

• Pros:
• Well established
• Easy to implement 
• Quick time to solution

• Cons: 
• Errors for distribution of particulate
• Does not represent reality 
• Cannot capture local concentrations of particles

• Physics approach: Calculate the force on every particle (2,3) and track trajectories 
during fairing redistribution process.(4)

• Pros:
• Removal is based on first principles (not all particles detach from surfaces)
• Provides high fidelity data on classes of particles and their final locations

• Cons:
• Geometry dependent (no two missions are the same)
• Can be computationally expensive

25
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Model evaluation: Poiseuille flow
• Mikellides et al.; 2020(a) (9) describes experiments performed with a laminar 

flow device that evaluated the conditions by which particles were removed from 
a substrate of interest.

• The flow configuration described is known as a Poiseuille flow, which has an 
analytic flow solution! After manipulating the Navier—Stokes equations a bit, 
we get the following…

26

See fluid dynamics textbooks, 
such as Pozrikidis (2016) (22) for 
details on derivation and similar 

flow descriptions.
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Flow field comparison: Poiseuille flow (y vs. u)
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𝑄 = 0.75	L/min 𝑄 = 2	L/min

𝑄 = 0.5	L/min𝑄 = 0.25	L/min

• Flow field comparisons between analytic and CFD results (wall refinement)
• Low amount of error between the two plots
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