Recent experiments on thruster plume induced contamination

Martin Grabe (DLR)

CCMPP - September 12, 2023

Thruster Plume Induced Contamination (PIC)

- Reaction control thrusters eject gas (expected!), but potentially also liquid and solid matter
- "Contamination": plume effluents impair function of a surface or purity of a natural environment.

Manifestations of PIC

- Alteration of surface properties (through deposition, erosion or etching)
- Degradation of instrument performance
- Sample invalidation

Thruster Plume Induced Contamination Challenges in ground-based testing

- high-vacuum required for free plume expansion ($p_{\rm b} < 10^{-5}$ mbar)
- Thruster mass flow rate: few gram per second!
- Must prevent molecular backscatter

DLR High-Vacuum Plume Test Facility "STG-CT"

- Test section: 5.2 m × ø1.6 m
 (Vacuum vessel: 7.6 m × ø3.3 m)
- **LHe-cooled** cooper walls ($T_{wall} = 4.2K$)
- Background pressure **during** thruster operation: $p_{\rm b} < 10^{-5}$ mbar

DLR High-Vacuum Plume Test Facility "STG-CT" Typical instrumentation

ESA "PhobosSR" 1N - Hydrazine

- European thruster
- Experiments:
 - Pitot pressure measurements
 - In-situ mass spectrometry
 - Regolith sample contamination (Analysis: The Open University, UK)

CCMPP Workshop 2023 - NASA Goddard SFC, Dr. Martin Grabe, DLR Göttingen, 2023-09-12

JPL / NASA "EPIC" 5N - Hydrazine

- U.S. thruster
- Experiments:
 - Contaminant flux
 - Non-gaseous effluents
 - Plume composition
 - Permanent contamination

JPL / NASA "EPIC" 18N - Hydrazine

- U.S. thruster (qualification unit)
- Experiments:
 - Contaminant flux
 - Non-gaseous effluents
 - Plume composition
 - Permanent contamination

BIPROPELLANT THRUSTERS

ESA "Green Propellant Plume Contamination" 20N - Propene / N₂O

- European / NZ thruster
 - 3D-printed
- Experiments:
 - Contaminant flux
 - Non-gaseous effluents
 - Plume composition
 - Permanent contamination

ESA "PhobosSR" 20N - Hydrazine / MON3

- European thruster
- Experiments:
 - Pressure and heat flux
 - In-situ mass spectrometry
 - Shadowgraphy
 - Witness materials

11

70°

. . .

Outlook: ESA "Bi-Prop Contam" + JPL / NASA "EPIC2" 10N - MMH / MON3

- European thruster(s)
- Experiments:
 - Pressure and heat flux
 - In-situ mass spectrometry
 - Shadowgraphy
 - Deposition and evaporation rates
 - Witness materials
 - FORP resistivity
 - Plume gas sampling
- Numerical modeling

Expect updates at the next workshop!

CCMPP Workshop 2023 - NASA Goddard SFC, Dr. Martin Grabe, DLR Göttingen, 2023-09-12

Thank you!

Contact

martin.grabe@dlr.de

DLR – German Aerospace Center Institute of Aerodynamics and Flow Technology Spacecraft Department Göttingen

CCMPP Workshop 2023 - NASA Goddard SFC, Dr. Martin Grabe, DLR Göttingen, 2023-09-12