Dense Phase CO2 Outgassing and Cleaning of Critical Components: Principles, Methods, and Equipment

2021 Contamination, Coatings, Materials and Planetary Protection Workshop: 10 November 2021 Goddard Space Flight Center, Greenbelt, Maryland

Prepared by: N.W. Sorbo and J. Turner Cool Clean Technologies LLC

Who Is Cool Clean Technologies?

- A company that uses CO₂ in all phases:
 - for cleaning and surface preparation of precision surfaces;
 - machine tool cooling and lubrication for precision machining applications;
 - selective extraction.
- Strong Proprietary Products Patents and Know-How
- All our processes for all these applications have these important attributes:
 - Processes are effectively dry;
 - Processes generate Zero to trace byproducts;
 - Applications are environmentally friendly and use environmentally safe products and energy efficient processes;
 - User not a producer of Carbon Dioxide (CO2).

Core Competencies

- Spray Cleaning:
 - Particle Removal;
 - Residue Removal;
 - Surface Preparation / Functionalization.
- Machine Tool Cooling and Lubrication:
 - Dry machining (hard turning and hard milling)
 - Plastic machining
 - Opening machines, VTLs, Gang lathes
 - Drilling thru spindle
- Dense Phase Extraction/Cleaning:
 - Precision Degreasing;
 - Silicone Extraction;
 - Aerospace Outgassing;
 - Porous Metal Cleaning;
 - Garment Cleaning
 Botanical Oil Extraction.

Spray Cleaning – Particle/Residue Removal

Machine Tool Cooling and Lubrication

Dense Phase Extraction / Cleaning

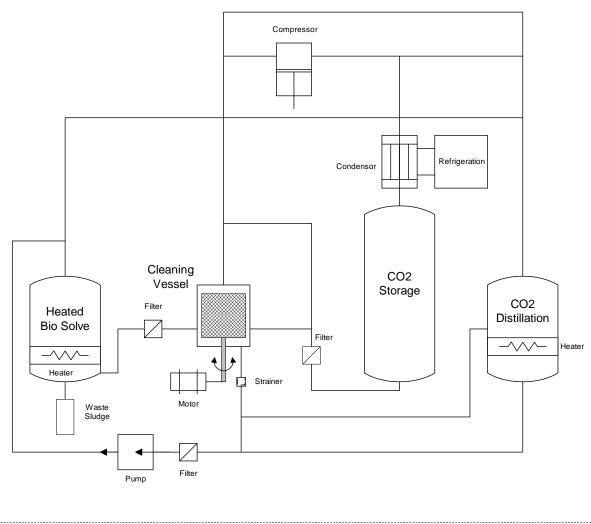
Outline

- CO2 Technology Background
- Process and Systems Overview
- Liquid CO2 Extraction of Silicones
- Aerospace Component Cleaning

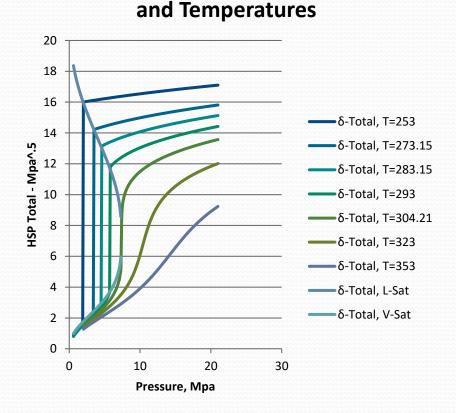
Presentation contains information previously presented by authors and by former colleagues – J. Elders & W. Elias, Raytheon, "LCO2 Cleaning of Space Hardware Assemblies", Presented at CCMPP meeting July 2015.

CO₂ Technology Background

Dense Phase CO2


Key Properties Favorable for Dense Phase CO2 Cleaning

- Low Viscosity Only about 8% of H₂O viscosity
- Low Surface Tension Only about 7% of the H₂O surface tension
- Variable Solubility depending on operating pressure and temperature
- Solubilizes many other co-solvents alcohols, ketones, glycol ethers


How Enertia[™] LCO2 System Works

- CO2 Chemistry
 - Alone (neat)
 - In combination with soluble additives
 - In combination with High Boiling Solvents (HBS)
 - Solvency is Tunable
- Operating conditions:
 - Temperature: -50 to 200°C
 - Pressure: 6 to 250 bar.
- Cleaning Mechanism:
 - Tunable solvent cleaning power + physical cleaning action.

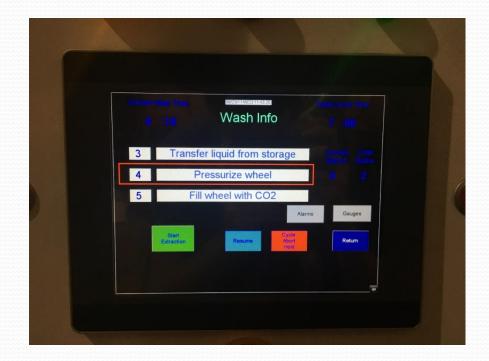
CO₂ as a 'Tunable' Cleaning Solvent

- CO2 solubility variable with temperature and pressure variations.
- Three CO2 Solvent Chemistries:
 - CO2 Only (Neat)
 - Silicone / Phthalate Extraction
 - Aerospace Outgassing Alternative
 - CO2 with Co-Solvent
 - Advanced chemistries: alcohols, ketones, others
 - Oil removal, films, stains, disinfection / sterilization
 - HBS prewash with CO2 Rinse
 - HBS moves residue from part into solution, CO2 rinse's part with HBS
 - Effective for: heavy degreasing, dry cleaning, shop rags, polishing compound removal, porous metal manufacturing debris

HSP for CO2 at Various Pressures

Enertia[™] LCO2 Extraction System – CFx - Top Loader

Enertia™ LCO2 Extraction Systems – GFx - Front Loader

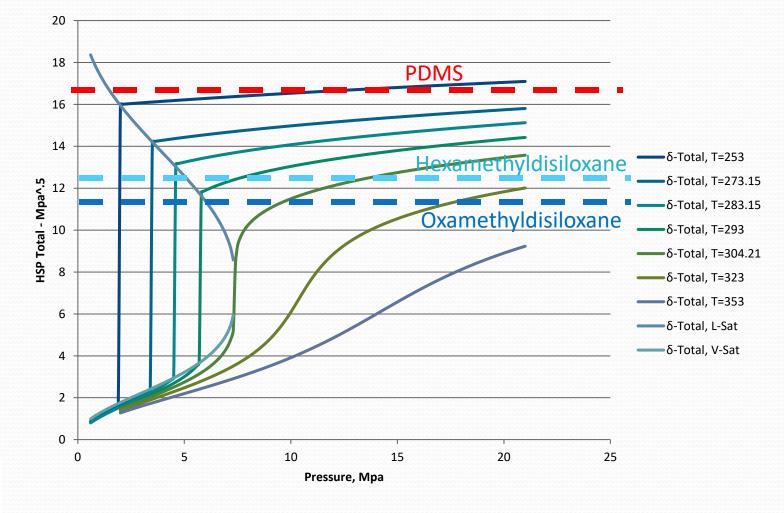

LCO2 Level in GFx Cleaning Vessel

© Cool Clean Technologies LLC 2021

Key features of Enertia[™] Dense Phase Systems

- Easy operator interface
 - Simple loading/unloading
 - Automatic extract delivery
 - Push-button operation
 - Easy filter cleaning
 - Data logging of run info
- Large capacity extraction vessel volume
 - Ideal for low density botanicals
- Large CO2 throughput
- Effective CO2 Recycling
 - +99% of CO2 Processed is recycled

LCO2 Extraction of Silicones

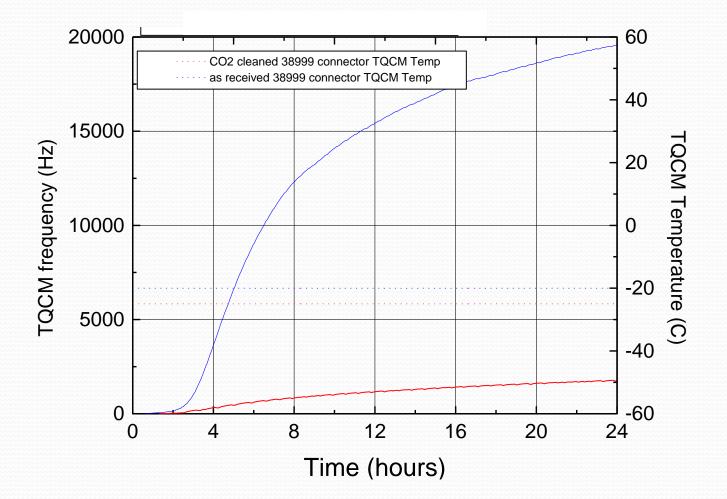


LCO2 Extraction is an alternative to TVB

- Uses beneficial LCO2 silicone monomer <u>solubility</u> to enable rapid and effective extraction of volatile compounds.
- LCO2 solubility can be 'tuned' to optimize process.
- Uses beneficial LCO2 diffusivity / transport characteristics to penetrate substrate to solubilize volatiles.

CO2 for Extraction Solubility of Representative Silicones

LCO₂ Outgassing: Advantages / Disadvantages


- Advantages:
 - Room temperature extraction (0 30°C)
 - Typically, minimal impact on elastomeric materials with careful depressurization
 - Much faster than vacuum bake-out 3 hrs vs 24 72 hrs
 - Faster turn-around time for chamber between runs
 - More variable scheduling for crucial projects no long process times

• Disadvantages:

- New application for some material may need confirmation testing
- LCO2 Outgassing not necessarily an accepted / qualified process
 - Can be used as a 'pre-step' to compliant outgassing process
- Impact of LCO₂ at extraction pressure on substrate needs to be confirmed
- Chamber size limitations
- Part configuration must accommodate pressures up to 70 atmospheres.

Effect of LCO₂ Cleaning on Outgas Potential of MIL-C-38999 Connector Saver

Effect of Processing on Outgassing Potential

Laird Tech T-Flex 6100 / 6120

Material/Test conditions	Condition	(TML)	RML (TML - WVR)	CVCM
T-Flex 6100	Baseline (no processing)	0.939	0.927	0.283
T-Flex 6100	48 hr/125°C VB	0.204	0.194	0.134
T-Flex 6120	72 hr/125°C VB	0.130	0.096	0.072
T-Flex 6120	2 hr LCO ₂ cleaning	0.111	0.091	0.035
T-Flex 6120	4 hr LCO ₂ cleaning	0.040	0.024	0.004

4-hour LCO₂ processing produced vastly better outgassing results than 72 hours of vacuum bakeout

TML – Total Mass Loss CVCM - Collected Volatile Condensable Materials WVR – Water Vapor Regained © Cool Clean Technologies LLC 2021

Effect of Processing on Weight Loss

	THERMAL VACUUM	2-hour LCO ₂	4-hour LCO ₂
	BAKEOUT*	cleaning	cleaning
% Weight loss	-0.81	-5.96	-8.11

*125 °C for 48 hrs at pressure < 5x10⁻⁵ torr

- Silicones in gap pad materials migrate and contaminate surrounding surfaces.
- As-received material had been observed to leave a "potato-chip" stain assigned to low MW silicones
- This impact should be considered when selecting silicone-based materials.
- Extensive LCO2 cleaning can change material consistency (less sticky, harder)

LCO₂ removes mobile material much more effectively than TVB.

Processing Impact on Laird T-Flex 600 Thermal Conductivity

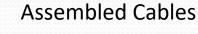
Material Conditioning	% Change from Baseline	Change in Thermal Conductivity Value *, W/m-K			
48 hr Vacuum Bake	-12.2	-0.23			
72 hr Vacuum Bake	-1.3	-0.03			
2 hr LCO ₂ Cleaning	+3.0	+0.06			
4 hr LCO ₂ Cleaning	+16.9	+0.32			

* Thermal conductivity measured with guarded plate test method (ASTM C 177 "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus")

Cost Comparison of LCO₂ Extraction vs TVB

- System prep time:
 - LCO₂ 3 hrs system prep (pressurization, temperature);
 - TVB 8-12 hrs system prep (evacuation, temperature).
- Sample Prep, Reporting Time:
 - Similar for both methods.
- Processing time:
 - LCO₂ process time proportional to material thickness (as for VB);
 - One-hour LCO₂ nominated as equivalent to 24 hours vacuum bake.
- Operational costs:
 - LCO₂ process CO₂ + electricity \$20-50 per cycle, depending on length of extraction;
 - TVB process Electricity \$???.

LCO₂ Extraction Substantially Faster than System Prep and Processing Time Savings


Outgassing of Aerospace Components

- Objective:
 - Extract volatiles and condensables from aerospace elastomers.
- Results:
 - LCO2 Extraction per Customer Spec;
 - Extraction duration: 2 hrs vs 36 hrs;
 - Outgassing confirmed by ASTM 595.

Satellite Heaters and Connectors

Extraction of Volatile Compounds from

Aerospace Elastomers

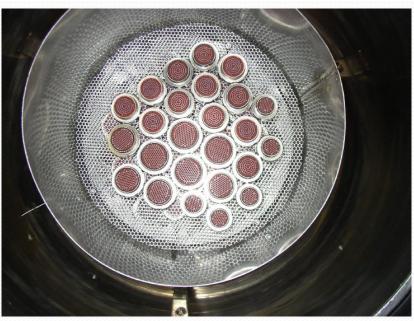
- Objective:
 - Extract volatiles and condensables from aerospace elastomers;
 - Alternative to traditional vacuum bake-out procedure (lasting 24 -72 hours).
- Method:
 - Enertia liquid phase extraction, 1000 psi for 30 120 minutes.
- Results:
 - Meets ASTM E595 outgassing standard by factor of 6.

LCO₂ Outgassing of Silicone Sheet

- Outgassing tests were tested on samples (thickness = 0.075) A-A-59588 CLASS 3B - GRADE 50:
 - Grey silicone of the "red" and "grey" silicone rubber samples;
 - Required 'aging' 70 hours at 100°C (212°F).
- LCO2 Extraction per HPR46035:
 - 2 hr extraction, 900 psig, 70F Vs 24-hour vacuum bake-out;
 - Some blistering of grey sample, red sample showed no blistering;
 - Both samples passed ASTM E-595.

***************************************	Observations	AS RECEIVED		CO2 CLEANED		VACUUM BAKEOUT	
		<u>TML, %</u>	<u>CVCM, %</u>	TML, %	CVCM, %	TML, %	CVCM, %
.D. RUBBER-grey	Some blistering observed	0.3730	0.1730	0.0920	0.0040	0.0600	0.0080
TILLMAN SEAL-red	No blistering obserrved	0.4910	0.0960	0.4220	0.0050	0.3820	0.0060
STM E 595 screening level standard for ejection of spacecraft materials		1.0000	0.1000	1.0000	0.1000	1.0000	0.1000

Cleaning of Aerospace Cable Assemblies

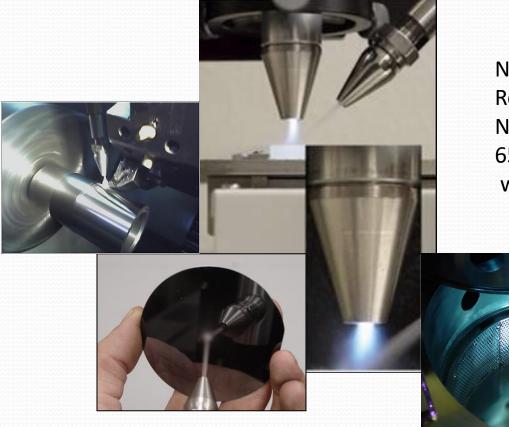

- Objective:
 - Extract volatiles and condensables;
 - Remove particles;
 - Alternative to solvent wash / wipe and traditional vacuum bake-out procedure (lasting 24 - 72 hours).
- Method:
 - Enertia[™] liquid phase extraction, 1000 psi for 120 240 minutes.
- Results:
 - Reduces outgassing time by half;
 - No impact electrical characteristics, (continuity, isolation, dielectric strength).

Aerospace Connector Outgassing

- Objective:
 - Extract solvent soluble compounds from connectors.
 - Traditional vacuum bake-out requires 100's of hours.
- Method:
 - Enertia[™] liquid phase extraction, 1000 psi.
- Results:
 - 4 6 hour LCO2 process reduced acceptable bake-out target by 100 hours.
 - Components used in aerospace flight hardware.

Cleaning of Thermal Straps

- Objective:
 - Extract solvent soluble compounds from thermal straps.
 - Traditional vacuum bake-out takes too long.
- Method:
 - Carbonated solvent soak followed by LCO2 extraction, 1000 psi, 120 minutes .
- Results:
 - Passed outgassing test.
 - Cleaned components used in aerospace manufacturing.



Summary

- LCO2 Extraction systems are an effective way to remove volatile silicone compounds from aerospace materials.
- LCO2 shows wide variation in solubility parameter values over a relatively small pressure range.
- LCO2 solubility compares favorably with solubilities of many important silicones.
- LCO2 extraction equipment has been outfitted to automatically control all relevant extraction parameters for repeatable results.

For Further Information . . .

Nelson W. Sorbo, Ph.D Research and Development Nelson.sorbo@coolclean.com 651-842-8628 (o) | 310-508-4045 (m) www.coolclean.com

