Outgassing of Space Materials at Low Temperature CCMPP-2021

Guillaume Rioland, Mathieu Hubert, Baptiste Houret, Delphine Faye

CNES

November 8, 9 and 10, 2021

Table of contents

Introduction

Measurements

- Facility
- TML
- RGA

Prediction

Conclusion

cnes .

• • •

Introduction

Increase of cryogenic missions Cryogenic temperature → sensitive surfaces → performance affected by contamination

The Athena X-ray Integral Field Unit (X-IFU) Pajot, F., Barret, D., Lam-Trong, T. *et al.*, The Athena X-ray Integral Field Unit (X-IFU). *J Low Temp Phys* 193, 901–907 (2018)

Trishna

Buffet . L, Gamet P., Maisongrande P. *et al.*, The TIR instrument on TRISHNA satellite: a precursor of high resolution observation missions in the thermal infrared domain, *Proc. SPIE 11852*, International Conference on Space Optics - ICSO 2020, 118520Q (2021)

MicroCarb, MTG, CO2M, LSTM, CHIME and others... Outgassing at cryogenic temperature \rightarrow intuition to be negligible \rightarrow no experimental data

³© cnes

Outgassing of Space Materials at Low Temperature - CCMPP 2021

Introduction

Objectives: to quantify the outgassing at cryogenic temperature

Optimization of CNES facilities

Optimization of thermal control to cool down the oven at cryogenic temperature

Optimization of oven temperature and location → RGA sensitivity

Materials and protocol

RTV-S 691 adhesive

Cryogenic MLI (52 sheets + PE spacers)

Parameters:

- About 12 g of material
- NDK[®] CQCM, S = 2.38.10⁸ (Hz/g)/cm²
- $T_{CQCM} = -165 \,^{\circ}C$
- $T_{material} = -75 \text{ °C to } 25 \text{ °C}$

Protocol:

- Samples are loaded into ovens
- GN₂ flushing during a certain duration then LN₂ cooling at ambient pressure
- At a certain temperature, vacuum system was switched on
- Cooling till -165 °C
- Start of the temperature stages and RGA analysis

TDGCMS

Gas chromatography (GC) analysis performed with a Clarus 500 chromatograph (PerkinElmer Elite 5-MS column with dimensions of 60 m \times 0.25 mm \times 0.25 µm) coupled to a TurboxMatrix 300 TD thermal desorber (TD) and a Clarus 500 mass spectrometer (MS)

Parameters: 200 °C, solvent delay of 1 min, ambient pressure

RTV-S 691 adhesive chromatogram

- benzene at retention time (tr) = 4.6 min
- toluene (tr = 7.9 min)
- cyclic and linear siloxanes (tr = 12.4, 15.3, 18.1, 20.5, 26.1, 27.5 min, and so on)

Cryogenic MLI chromatogram

- benzoic acid, phenyl ester (tr = 23.5 min)
- alcohols such as 1-heptanol, 6-methyl- (tr = 13.9 min)

Measurements

RTV-S 691 adhesive

RTV-S 691 adhesive: outgassing and RGA analysis (water desorption)

12 g of material, $T_{RTV-S691}$ = -75°C to 25 °C, T_{CQCM} = - 165 °C

Outgassing starts from -50 °C (0.001 %)

Water starts to desorb from -50 °C and regularly up to 25 °C $\Delta P_{18_{-50^{\circ}C}} = 2.0.10^{-12} \text{ mbar}$; $\Delta P_{18_{-25^{\circ}C}} = 6.0.10^{-12} \text{ mbar}$; $\Delta P_{18_{-0^{\circ}C}} = 7.5.10^{-12} \text{ mbar}$; $\Delta P_{18_{-25^{\circ}C}} = 7.0.10^{-12} \text{ mbar}$

9 © cnes

RTV-S 691 adhesive, RGA analysis

Siloxane fragment: SiC₃H₉

73 fragment (moving average)

Silicone fragment might start to desorb from 0 °C but significantly from 25 °C $\Delta P_{73_25^\circ C} = 2.5.10^{-13}$ mbar

RTV-S 691 adhesive, RGA analysis

Benzene fragments: C₆H₆, C₆H₅, C₄H₃, C₃H₃

Benzene fragments might start to desorb from 0 °C $\Delta P_{39_{-}25^{\circ}C} = 1.5.10^{-13}$ mbar

RTV-S 691 adhesive, RGA analysis

 C_xH_y fragments: C_2H_5 , C_2H_3

Low mass C_xH_y fragments start to desorb from -75 °C but significantly from 25 °C $\Delta P_{29-75^\circ C} = 5.5.10^{-12} \text{ mbar}$; $\Delta P_{29_{-75^\circ C}} = 1.1.10^{-11} \text{ mbar}$; $\Delta P_{27_{-25^\circ C}} = 1.5.10^{-12} \text{ mbar}$

12 © cnes

Cryogenic MLI

cnes

14) © cnes

Measurements

Cryogenic MLI: outgassing and RGA analysis (water desorption)

12 g of material, T_{MLF} -75°C to 25 °C, T_{CQCM} = -165 °C

Outgassing starts from -75 °C (0.002 %)

Water starts to desorb from -50 °C and regularly up to 25 °C $\Delta P_{18_{-50^{\circ}C}} = 2.0.10^{-12} \text{ mbar}$; $\Delta P_{18_{-25^{\circ}C}} = 6.0.10^{-12} \text{ mbar}$; $\Delta P_{18_{-0^{\circ}C}} = 12.0.10^{-12} \text{ mbar}$; $\Delta P_{18_{-25^{\circ}C}} = 7.0.10^{-12} \text{ mbar}$

Cryogenic MLI, RGA analysis

 $\underline{C_xH_y}$ fragments: C_2H_5 , C_2H_3

29 fragment (moving average)

Low mass C_xH_y fragments start to desorb from -50 °C $\Delta P_{29_-50^\circ C} = 5.0.10^{-13} \text{ mbar}$; $\Delta P_{29_-25^\circ C} = 1.0.10^{-12} \text{ mbar}$; $\Delta P_{29_0^\circ C} = 2.0.10^{-12} \text{ mbar}$

15 © cnes

Fitting

LP/VB5E -> computation, simulation and database

• Computation part → first order desorption law, consideration of 5 outgassed chemical species with decreasing volatility, linear temperature slope

$$\frac{d\mu_{(t)}}{dt} = k_{i(t)} (\mu_i - \mu_{i(t)}) \text{ with } \mu_{i(t0)} = 0$$

$$\mu_{(t)} = \sum_{i=1}^n \int_{t_0}^t (\mu_i - \mu_{i(t)}) \cdot (1 - e^{k_{i(t)}dt})$$

$$k_{i(t)} = A_i e^{\frac{-E_i}{RT(t)}}$$

- \rightarrow to find the coefficients (μ , E, A)1 to 5 from the multi-step test
- Simulation part enables to simulate outgassing graphs for a given material using coefficients (μ, E, A)1 to 5 with different temperature profiles
- Database → to be re-used for other computation

Fitting

Coefficient values after fitting of each experimental curve for cryogenic MLI and RTV-S 691 adhesive

		Cryogenic MLI	RTV-S 691 adhesive
Exponential 1	μ (%)	1.10 ⁻³	0
	E (kcal / mol)	1.6	1
	A (1 / s)	3.10 ⁻³	9.10-4
Exponential 2	μ (%)	9.10 ⁻³	1.10 -3
	E (kcal / mol)	15	17
	A (1 / s)	2.10 ¹⁰	2.10 ¹²
Exponential 3	μ (%)	10.10 -3	2.10 -3
	E (kcal / mol)	17	19
	A (1 / s)	7.10 ¹⁰	1.10 ¹³
Exponential 4	μ (%)	8.10 -3	3.10 -3
	E (kcal / mol)	18	21
	A (1 / s)	3.10 ¹⁰	3.10 ¹²
Exponential 5	μ (%)	3.10 -3	6.10 ⁻³
	E (kcal / mol)	18	21
	A (1 / s)	2.10 ⁹	8.10 ¹⁰

Fitting is pretty good \rightarrow same order of magnitude for μ (cf. experimental data)

Activation energy below 20 kcal/mole → desorption (< 10 kcal / mol) and diffusion (< 15 kcal / mol)

John J. Scialdone. (1982), Characterization Of The Outgassing Of Spacecraft Materials, Proc. SPIE 0287, Shuttle Optical Environment.

Prediction

Prediction from coefficients (μ , E, A)1 to 5 found with fitting

RTV-S 691 adhesive

Cryogenic MLI

Outgassing is negligible at -75 °C but starts at -50 °C Models might need to be reworked

Conclusion

- CNES facilities were modified and are now ready to perform tests for different materials at cryogenic temperature.
- Outgassing starts at -75 °C (mainly water) and at -50 °C for some small solvent fragments but outgassing remains dominated by water desorption.

Temperature	-75 °C	- 50 °C	- 25 °C	0 °C	25 °C
TML for RTV-S 691 adhesive (%)	0	0.001	0.002	0.003	0.004
TML for cryogenic MLI (%)	0.002	0.01	0.01	0.007	0.001

- RGA data processing could be improved to decrease S/R ratio.
- Models and predictions need to be reworked and validated at low temperature to be realistic.
- Some materials have already been tested (epoxy glues, composite and other MLI) and each material exhibits its own behavior at low temperature.
- A paper is currently being written.

Thanks!

