

Stress Development in Silicate Thermal Control Coatings

Selim Boukabara

NASA GSFC Code 546 Summer Intern University of Maryland

2019 Contamination, Coatings, Materials, and Planetary Protection Workshop 6-7 November 2019

Introduction

- Loss of structural integrity either through adhesive or cohesive failure has plagued hardware coated with silicate coatings
 - Impact surface thermo-optical properties
 - Particle contamination generation and impact to subsystems
- Causes for this loss of adhesive properties has been anecdotally identified in processing deficiencies
 - Inadequate surface preparation
 - Improper application conditions (dryness, applied to quickly, etc)
 - Improper curing conditions and durations
 - Dry film thickness to thick
- Current work attempts to determine fundamental environmental causes for these failures by looking at stress development within the coating

Causes of Cracking in Silicate Coatings

- Thermal Changes (Insignificant)
 - CTE Mismatch
- Humidity Changes
 - Evaporation of water within the coating
- Pressure Changes
 - Evaporation of water within the coating
- Stress develops within the coating before it cracks
 - The likeliness that it will crack is related to the level of stress build up

How can we quantify this stress?

- A shrinking thin film develops compressive stress that can be measured by flexural stress in a bending beam.
- Stoney's equation converts these changes into stress.
- For a small deflection:

$$-\Delta \sigma_{zz} = \Delta \mathbf{d}^* (E_s t_s^3) / (3L^2 (1-v_s) t_f t_t)$$

• For a large deflection that results in a uniform curvature:

$$-\Delta \sigma_{zz} = \Delta (1/R)^* (E_s t_s^3) / (6(1-v_s)t_f t_t)$$

What factors can influence measurements?

- Presence of a primer
- Dimensions of base
- Rigidity of substrate
- Thickness of film

Z93C55 Coated Kapton Undergoing Vacuum Depress

How we analyzed deflection/curvature?

- Digital images taken at regular intervals
- Deflection measured as length from original sample
- ImageJ/Digimizer will provide length and curvature change

Articles Under Test

Measured Values

- Radius of Curvature:
 - Data given: Area of traced circle in pixels
 - *R = $1/\sqrt{(\text{Area/CF})/\pi}$
- Deflection
 - Data given: Change in length
 - *d = Length/CF

*CF = Conversion factor

Humidity

- As humidity increases, deflection angle decreases.
- Deflection angle is a measurement that is not as universal as stress, but still indicates a trend.

Thermal Cycling

- Taken at rough vacuum
- Temperature increased with resistors and decreased with LN2.
- Stress development is faster when increasing temperature because of initial water removal.

Restrained vs. Unrestrained

 Kapton restrained during curing develops more stress than Kapton that is unrestrained during curing

Radius of Curvature vs. Temperature (Decreasing Temperature - Restrained Kapton)

Presence of Repair Characteristics

Environmental Condition Undergone	Average Maximum Stress Change (kPa)
1 week Cure 50% RH	-136.7
1 Vacuum test, 1 day 100% RH, 50% RH	35.0
1 Vacuum Test, 1 week 50% RH, 3 days 100% RH, 1- 5 days 50% RH	-102.8
2 Vacuum Tests, 1 week 50% RH, 3 days 100% RH, 3 days 50% RH	-163.0

- Each stress change is assumed to be caused by water removal
- Repair is observed after a brief period of high humidity and one vacuum test.
- Test itself is destructive to the coating
- Repair is limited

A Deeper Look at a "Broken" Sample

Pressure (torr)

Sample 2, after 1 week cure 50% RH Cure

Pressure (torr)

IPA as a Stress-Measuring Tool

- Immersed in IPA at various times during curing
- Stress development decreases in Kapton over time, but increases in Stainless Steel (304SS) over time
- Quickly and non-destructively indicates if a batch of silicate coating has fully dried

Structure of Z93C55 in Kapton vs 301SS

Conclusions

- Stress development in vacuum is significant enough to result in deflection followed by stress relief (cracking)
- Higher humidity results in lower stress development during curing
- Thermal cycling may cause stress through water evaporation
- Limited repair is possible after exposure to a high humidity environment
- IPA could be used as a stress measurement surrogate to vacuum exposure

Future Work

- Analyze the cause of alternative structure of Z93C55 in Kapton vs. Stainless Steel.
- Other solvents can be analyzed as potential stress-measuring tools.
- Healing can be analyzed through manual cracking
- Saturated gas environment of IPA can further elaborate how IPA takes in water from the Z93C55.

Acknowledgments

- The authors gratefully acknowledges support from the GOES program for funding NASA summer internship programs
 - NASA-GSFC
 - Dylan Kline, Code 546
 - Kenny O'Connor, Code 561
 - KBR, Inc.
 - George Harris
 - Alfred Wong
 - Grace Miller

Backup Slides

ATV Edoardo Amaldi Approaches ISS

