Thermal control coating patterns for thermo-optical property optimization

Dr. Teri Juarez, Materials and Processes Engineer Jet Propulsion Laboratory, California Institute of Technology

November 7, 2019

Surface Water and Ocean Topography (SWOT) Mission

Emma Bradford Materials and Processes Engineer

Andrew Nuss Materials and Processes Engineer

Ruwan Somawardhana Thermal Systems Engineer, SWOT

Eug-Yun Kwack Thermal Engineer, SWOT

All from Jet Propulsion Laboratory, California Institute of Technology

Outline

- Overview
- Objectives
- Success Criteria
- Test Coupons and Basic Coating Results
 - Adhesion and Thermal shock
- Pattern Results
 - Recommended Procedures
- Conclusion

Overview

- SWOT (Surface Water and Ocean Topography) satellite mission will complete the first global survey of Earth's surface water
- SWOT measures water levels with a deployable instrument (KaRIn) that is mounted onto a mast assembly
- Thermal analysis of the structure showed that exterior carbon composite panels on the mast require both low emissivity (ε) and low absorptance (α) to meet thermal requirements
- Thermal control coatings are typically used to address passive thermal control needs, but a single coating with the required thermo-optical properties does not exist

^{© 2019} California Institute of Technology. Government sponsorship acknowledged.

Overview Cont.

- SWOT thermal team proposed an alternating striped pattern, using S13GP:6N/LO-1 (S13) and Vapor Deposited Aluminum (VDA), to achieve thermal requirements
- JPL M&P developed a comprehensive qualification study to address processing challenges arising from the surface preparation and application of two distinct coatings
- Developed an adaptable procedure that can be applied to other similar applications for optimizing thermo-optical properties

Objectives

Basic Requirements

- Develop process for satisfactory adhesion of both coatings on MH55J cyanate ester composites
 - Also investigated adhesion of S13 on VDA
- Achieve acceptable thermo-optical properties for each coating

Pattern Requirements

- Identify order of coating process
 - VDA must be applied first, S13 is silicone based and undesirable in VDA vacuum systems
- Masking strategy, including tape selection to minimize contamination/residue → stripe intersections and overlapping
- Stripe thickness and spacing Information provided by thermal

Success Criteria

Basic Requirements

- Coatings must pass adhesion testing with a minimum of 3A rating using ASTM D3359 Method A
- Demonstrate acceptable thermo-optical properties
- Survive five thermal shock cycles (150 °C to LN₂) followed by adhesion testing to same standards above

Pattern Requirements

- Coatings in pattern configuration must pass adhesion testing with a minimum of 3A rating using ASTM D3359 Method A, including across the interface
- Survive ten thermal cycles to expected mission thermal extremes, followed by adhesion testing to same standards above

Thermal Requirements – slightly flexible since pattern can be adjusted to compensate for deviance from expected values

	VDA	S13
α	0.12	0.31 (EOL)
٤	0.03	0.88

Results of VDA Assessment (1/2)

- Coupons were processed by Surface Optics Inc. (San Diego)
- Layer of vapor deposited aluminum (VDA) applied to two sides of coupon per proprietary process
- Samples successfully <u>passed adhesion testing</u> in the as-coated condition and after thermal shock

As-Received Sample

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Adhesion Test

Results of VDA Assessment (2/2)

- Textural difference was observed between the two sides of the flight-like coupons. Sides are designated as bag and tooling side.
- Absorptance measurements differences were observed depending on the orientation of the sample during measurement
 - Measurements were made at different orientations by rotating the coupons to 45 degrees and 90 degrees
- Average emissivity was higher than target value
 - Properties were deemed acceptable by thermal team

	Bag Side	Tool Side	Target
Average Absorptance*	0.12 ± 0.03	0.14 ± 0.05	0.12
Average Emissivity*	0.03 ± 0.03	0.05 ± 0.05	0.03
Coupon F, Absorptance 0°	0.12	0.08	-
Coupon F, Absorptance 45°	0.13	0.08	-
Coupon F, Absorptance 90°	0.07	0.11	-

Tooling Side

Bag Side

*Values determined with at least 9 measurements

Results of S13 Assessment (1/2)

- Coupons were processed at JPL per internal processes
 - Bare M55J composite surfaces were abraded and primed
 - VDA surface was solvent wiped and primed
- S13 coatings on abraded and primed composite had mixed results. Some coupons failing adhesion testing in the as-coated condition and after thermal shock \rightarrow result of poor surface preparation
- S13 coatings applied to VDA successfully passed adhesion testing in the as-coated condition and after thermal shock

S13 on composite

S13 on VDA

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Results of S13 Assessment (1/2)

- S13 coating layer is thick enough to mitigate any textural influence of the composite substrate
- Thermo-optical property measurement differences based on orientation or surface texture were not observed
- Properties were in line with anticipated results and accepted by SWOT thermal team
 - No standard deviations listed because values were within known instrument error

	Bag Side*	Tool Side*	S13 on VDA**	Target
Average Absorptance	0.19	0.19	0.18	0.20
Average Emissivity	0.89	0.89	0.88	0.88

*Values determined with at least 9 measurements

**Values determined with 4 measurements

Pattern Sample Overview

- Four square coupons with alternate Kapton tape (low outgassing) masking schemes were coated with VDA on both sides
- Areas underneath VDA masking tape were pre-abraded & cleaned prior to masking → decided not to abrade between VDA stripes
- Area under masking was thoroughly cleaned after VDA application and subsequent masking removal
- VDA surfaces were masked with 3M 218 tape or AI as a nonadhesive option for coating with S13 between VDA stripes

Note: Coupon D not shown. Coupon was coated with VDA on both sides, no masking

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Masking results

- Paint was observed seeping under both hard masks and tape masks, likely due to composite panel texture
- Tape residue and small areas of VDA removal were observed when masking was removed after painting

Interface results

- Coupons B1 and C1 were used to investigate coating transitions at the stripe intersections and feasibility of $\frac{1}{2}$ " stripes
 - Interface options include: gap between coatings, attempt at exact interface, overlap of S13 onto VDA
- Adhesion tests performed across the interfaces were all successful
- Overlapping scheme was selected → provided same coverage, no peeling at interface, and less time consuming than exact masking

Final Recommendations & Results

Recommend coating the entire panel surface with VDA

- S13 adheres well to the VDA surface
- Eliminates masking for VDA and minimizes surface preparation
- Hard mask in combination with the 3M 218 tape to minimize the adhesive in contact with the VDA
 - Custom hard masks were generated using sheet metal and water jet
 - Small strips of tape used to hold edges down
- Larger panel processed with these recommendations successfully completed adhesion testing and thermal cycling

Coupon w/ S13 on VDA Hybrid Mask After Paint

Coated Full Size Panel

Conclusions

- The results yielded a design that met thermal requirements and survived anticipated thermal environments in low cycles tests
- Identified procedure provides a customizable process for optimizing thermo-optical properties
 - Particularly surfaces requiring low emissivity (ϵ) and absorptance (α)

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Questions?

SWO

Backup slides

SWC

Test Coupons

Witness coupons for VDA only

Witness coupons for S13 only

Coupons for striping

Note: Coupon F is not shown, but was coated with VDA on both sides, no masking