

Developing Outgassing Models of Space Hardware through Interpretation of **Quartz Crystal Microbalance Data**

> **Troy Gustke NIFS Intern**

CCMPP Presentation November 7th, 2019

http://engineering.larc.nasa.gov/

Outline

- Introduction
- Background
- Description of the Outgassing Modeling Program
- Current Implementation and Results

Introduction – Troy Gustke

ENGINEERING

- Born and raised in Newport News, VA
- Graduated from Peninsula Catholic High School in 2017

Junior at Virginia Tech

- Major: Chemical Engineering
- Minors: Mathematics, Chemistry
- Interests: Molecular Dynamics, Modeling, Transport Phenomena

Currently:

NASA - NIFS Intern (Contamination Control Engineering)

 Helped with integration and testing of space hardware for the MEDLI2 space flight project by providing molecular chemical analysis of non-volatile residue after thermal vacuum testing.

Virginia Tech – Undergraduate Researcher

 Developing accurate molecular dynamic simulations of metals using machine learning and optimization algorithms

Contamination Control - The monitoring and prevention of material degradation due to environmental effects, more specifically related to sensitive optical materials.

Problems related to Space Hardware

- Outgassing "The emission of gasses trapped in materials"
- The outgassing of materials can bring up non-volatile products
- Thin film deposition on optical systems can:
 - ✤ cause the laser to diffract, scatter, and reflect
 - Loss of thermal control and surface degradation
- Alters optical material properties

Space Environment Testing

Thermal Vacuum Chambers simulate space environment.

- 10⁻⁶ Torr
- -190 to 130 $\,^\circ$ C
- Sample Collection and Outgassing rate
 - Cold Finger
 - Scavenger Plate
 - Hardware Swabs/Wipes
 - TQCM

Quartz Crystal Microbalance

Quartz Crystal Microbalance (QCM)

- Uses piezoelectric effect to vibrate quartz at a certain frequency
 - Isolated Crystal
 - Controlled environment
 - Exposed Crystal
 - Allows mass deposition to occur
 - Frequency slows down as mass deposition increases

Figure 2 – Components of a QCM [2]

Outgassing Modeling Program

Run through Excel + Visual Basic

- Easy to navigate and run
- Widely used at NASA
- Relatively small amount of calculations
- Can be accessed on a share drive

020		• : ×	√ f.	x									
	А	В	С	D	E	F	G	Н	I	J	К	L	
1													
2													
3		Restart Options QCM Analysis											
4 5													
6													
7		ctions:											
8	- Have a QCM data file ready from a SITB Thermal Vacuum chamber.												
9	- Enter information that is necessary for calculations in the "Error" tab for the cells that are highlighted in yellow.												
10				ed outside	calculations	s, which may	/ be hard to	calculate.					
11		ells in greei				,	,						
12		-				are on the "	Graphs" Tak) .					
13													
14 15	* • • • •							- ! 4					
16	* After completing the prelimary inputs, press the "QCM Analysis" button to begin the program. Select a file then wait for the program to carry out it's calculations												
17													
18													
19													

Bakeout Theory

• All Mass Flux out of the surface of the materials is described by Fick's Law [1]

•
$$\frac{\partial m}{\partial t} = -D \frac{\partial m}{\partial x}$$

• From this, further mass flux equations can be derived

•
$$J = D \frac{\partial c}{\partial x} = \frac{2c_0 D}{L} \sum_0^\infty e^{\frac{-D(2i+1)^2 \pi^2 t}{4L^2}}$$

 $\circ~$ Derived mass flux out of the surface of a plate

• Simplify by using power and exponential fits

•
$$\frac{dm}{dt} \approx At^{-b}$$

•
$$\frac{dm}{dt} \approx Ae^{-bt}$$

Removing Noise

- QCM has many factors that affect the beat frequency
 - Temperature, mechanical, and electrical noise can cause error
- Since most noise is random noise, filtering over a designated kernel can reduce the noise drastically
 - If the data is noisy, increase the kernel

Outgassing Modeling Program

Error Analysis

 Mathematical computations are made to find A and b values for the fitted functions [1]

$$A = \frac{\sum X^2 \sum Y - \sum X \sum XY}{N \sum X^2 - (\sum X)^2}$$

$$B = \frac{N\sum XY - \sum X\sum Y}{N\sum X^2 - (\sum X)^2}$$

• Correlating sigma values are calculated to the fitted models

$$\sigma_{Y} = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (Y_{i} - A - Bx_{i})^{2}}$$

- As time increases, the uncertainty of the model increases
- A Gaussian distributive curve is taken of the data with the sigma bounds as the distribution bounds

	Number	fraction	Gaussian
Above 1 sigma	313	0.141	0.159
Below 1 sigma	180	0.081	0.159
Number of samples	2218		

```
Gaussian check OK? TRUE
```


Outgassing Modeling Program

Systematic Error

- Many data sets have systematic error that does not follow the material outgassing trend
 - Electrical noise
 - Thermal difference between the 2 crystals
 - Mechanical noise from LN2 pipes and gates
 - Grounding noise
- Since these data points do not represent material outgassing, this data can be disregarded when calculating the outgassing trend
 - Having many useless data points hurts the accuracy of the model

Delta Data Plot

Results

Outputs

- Outgassing rate of hardware in Hz/hr and confidence value
- Time of stabilization
- Deposition rate of hardware in g/s and confidence value
- Graph of the Delta Beat Frequency vs. time with a power law and exponential law applied along with correlating sigma boundaries

Delta Data Plot

Mentor

- Gugu Rutherford: NASA Contamination Control and Planetary Protection Lead
- Dave Hughes: NASA GSFC Contamination Control Engineer

Other Acknowledgements

- Brittany Downing: NASA Contamination Control NIFS Intern
- Anthea Empson: NASA Contamination Control STEM Takes Flight Intern

- [1] Hughes, D. (2011). Contamination Control Course: Outgassing Certification (pp. 1–84). NASA Goddard Space Flight Center.
- > [2] Wallace, S. (n.d.). QCM: Theory and Practice. Temecula, CA.
- [3] Huang, A. Y., Kastanas, G. N., Kramer, L., Soares, C. E., & Mikatarian, R. R. (2016). Materials outgassing rate decay in vacuum at isothermal conditions. *Systems Contamination: Prediction, Control, and Performance 2016, 9952,* 995206. https://doi.org/10.1117/12.2241212