

Gugu N. Rutherford*a and Elaine Seaslya

Brandon A. Walker^b, Bo Xiao^b and Messaoud Bahoura^b

^aNASA Langley Research Center, 21 Langley Blvd, Hampton, VA USA 23681-2199

^bNorfolk State University, 700 Park Avenue Norfolk, VA 23504, USA

http://engineering.larc.nasa.gov/

Outline

Review of Contamination Control Methods and In situ Raman Detection of Contamination

Lessons Learned from In Situ Raman Detection of Contamination

> Development of Raman Spectroscopy Witness Monitoring Program

Development of Contamination Tolerant Optics

Conclusion and Path Forward

Contamination Control Methods for Monitoring Molecular Contaminants

Type of Monitoring	Pros	Cons	
TQCM (Temperature Quartz	Quantitative data for	Not Qualitative	
Crystal will obalances	change within the 10^{-4} Torr to		
Visual Inspection	Time effective, Low Cost	Not Qualitative and Not	
		Quantitative	
NVR Analysis with ATR-FTIR,	-Able to determine	-Time consuming, at least a	
XPS, TOF-SIMS, Witness Plate Program, and GC-MS	Quantitative and Qualitative information	week for results	
		-Additional sample	
	-Determination of complex chemical content	preparation	
		-High cost instruments that	
	-Low limits of detection for	are bench top only usage	
	XPS, TOF-SIMS, and GC-MS		

These methods are used intermittently through out the life cycle. Often contamination concerns can be further in the lifecycle before it is identified as a risk.

In Situ Raman Spectroscopy for Detection of Contaminants on Spacecraft

Recently, in situ detection of a contaminant has occurred on spacecraft.

> Initial field work with the in situ Raman analysis identified that surface matters

- Scattering on surfaces is dependent on the light interactions with the material
- Opportunity exist to engineer a witness monitoring program to pair with portable Raman spectroscopy
 - Highly Reproducible
 - Reduces impact to schedule
 - Early detection within the AI&T phases

Existing witness plate materials were compared to conformal coated silicon wafers

- Gold Coated Silicon Wafers
- Un-doped Silicon Wafers
- Ultra High Vacuum Aluminum Foils (aka Non-Volatile Residue "NVR" Foils)
- Atomic Layer Deposition (ALD) Grown Metal Oxide Coatings on Silicon Wafers
 - ALD grown films are conformal and high quality films

- Recent research indicates thin precious metal films, precious metal nanostructures, metal oxide thin films, and self assembled monolayer films can be coupled with a Raman spectrometer to provide enhanced analyte detection.
 - SERS (Surface Enhanced Raman Spectroscopy) and SPR (Surface Plasmon Resonance) devices has enabled non-invasive enhanced detection of an analyte.

Using the Keyence[®] VHX-6000 Digital Microscope and the a VEECO[®] Atomic Force Microscope

Sample ID	Mean Roughness (Ra) Value		
Aluminum Foil	1093.3 μm		
Gold Film Deposited onto Silicon Wafer	0.243 nm		
ALD Grown HfO ₂ onto Silicon Wafer	0.547 nm		
Un doped Silicon Wafer	0.210 nm		

- A 25 % solution of Down Corning[®] (DC) 704 silicone oil in a 50/50 hexane/ isopropyl alcohol solution is drop casted onto each sample
- Once the samples are dry, each sample is characterized with the portable B&W Tek i-Raman[®] Plus Raman spectrometer over an average of three scans during a 10 second acquisition with 20% laser power.

- Raman bands unique to DC-704 are observed on the aluminum foil and the gold coated silicon wafer witness plates at peak locations I, II, III, IV, and V.
- Al foil and the gold coated silicon wafer witness plates enable the most conclusive detection of the silicone contaminant of DC-704
 - Highest Intensity of these peaks

Raman Band Location	Functional Group
487 cm ⁻¹	Si-O-C
520 cm ⁻¹ , 548 cm ⁻¹	Si-O-Si
605 cm ⁻¹	Si-O-Si
1702 cm ⁻¹	Si-O-Si
2876 cm ⁻¹	Si-O-Si

ALD Grown TiO₂ for Contamination Tolerant Optics

Existing self cleaning technology established TiO₂ is ideal for cleaning organic contamination

- Construction Industry
- Water Treatment
- Patent US6290180B1, Browall and Wei with Lockheed Martin Corporation, "Photocatalytic coatings on optical solar reflectors to decompose organic contaminants"
- Proof of Concept Experiment with Silicone contaminated ALD grown TiO₂ thin films on Corning 2947 glass slides
 - 50 cycles (est. 2nm)
 - 75 cycles (est. 3 nm)
 - 300 cycles (13.96 nm +/-0.03 nm)
 - 500 cycles (21.08 nm ±0.020 nm)
- To determine transmission, a Perkin Elmer Lambda 950 UV Visible spectrophotometer characterizes each sample
 - Before contamination
 - After contamination
 - After UV irradiation
 - Each sample is then exposed to a 325 nm He-Cd Laser for 30 minutes

Transmission Characterization of 2 nm TiO₂ vs 20 nm TiO₂

self-cleaning effect? ☑

Summary of Ra Value of TiO₂ and Self-Cleaning Effect

Sample	Electro Magnetic Range	Observed Self- Cleaning after UV Irradiation?	Percent Increase in Transmission	Transmission Above 90% After UV Irradiation?	Crystalline Phase
2 nm TiO ₂ on Corning Glass	320 nm to 370 nm		0.95%		Brookite
2 nm TiO ₂ on Corning Glass	400 nm to 800 nm		1.07%		Brookite
2 nm TiO ₂ on Corning Glass	880 nm to 2300 nm		0.88%		Brookite
20 nm TiO ₂ on Corning Glass	320 nm to 370 nm		15.1%	X	Amorphous
20 nm TiO ₂ on Corning Glass	400 nm to 800 nm		5.2%		Amorphous
20 nm TiO ₂ on Corning Glass	880 nm to 2300 nm	×	-2.89%	X	Amorphous

Surface roughness can increase the resonance angle

- Impacting coupling between the Raman laser and the analyte adsorbed to the surface of the witness plate
- Multiple studies link higher Ra values to enhanced Raman detection of analytes
- The HfO₂ coated silicon wafer has a highest mean roughness values that is higher than the gold coated silicon wafer HfO₂ coated silicon wafer was not able to detect all the Raman bands common to the silicone contaminant.
 - Gold has a surface plasmon that is in the visible range.
 - Al has a surface plasmon that is in the UV range
 - The natural surface plasmon of the gold could be coupling with the Raman laser wavelength of 785 nm which would amplify the signal detection capabilities
 - This study indicates that surface does matter for Raman spectroscopy.
- Preliminary work identified the potential of ultra thin ALD grown TiO₂ coatings to create contamination tolerant optics
- Future work will be to test the ALD grown coatings within a vacuum environment as witness plates and contamination tolerant optics

Questions?

