

In-situ Performance Evaluation of Contaminated Optical Surfaces

B. Bras¹, Y. Tsuchiya², R. Rampini¹, C. Semprimoschnig¹ 20/07/2017

¹ ESTEC/ESA, the Netherlands ² JAXA, Tsukuba Space Centre, Japan

2017 CCMPP – NASA's Goddard Space Flight Center

Agenda

- **1**. Introduction
- 2. Previous work
- 3. Test Method and Chamber
- 4. Results: RTV s691
- 5. Results: Scotch-weld Epoxy Adhesive
- 6. Data Treatment
- 7. Closing Remarks

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 2

+

= II 🛌 == + II = 🚍 = II II = = = = 🚳 II = II 🗰 🕷 📷

Introduction

The **Contamination criticality** is nowadays recognized by the space community. Throughout the years, many efforts have been directed to understanding and identifying **Outgassing sources**.

However, there is still a general knowledge deficiency related to the **effects** of the presence of such contamination on different optical surfaces.

Introduction

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 4

÷

*

Introduction: Effects

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 5

*

= 11 🛌 == + 11 == 🔚 = 11 11 == = = 💷 11 = 1 = 📰 🖽 🗯 💼

Introduction: Effects

Lower Contrast in blue channel; slight increase in noise

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 6

÷

= 88 🛌 == + 88 💻 🚝 == 88 88 == 12 88 == 12 88 == 12 88 ==

• In-situ Optical Characterization of Outgassed Compounds, R. Martins et all, Proceedings of the 13th ISMSE, Pau, France, 2015

• Investigation of contamination effects on critical surfaces, B. Bras et all, Proceedings of the 12th ISMSE, Noordwijk, The Netherlands, 2013

+

_ II 🛌 :: 🖛 + II 🗯 🔚 二 II II _ _ _ :: 📰 🖬 🚺 II _ :: II 🗰

Main Goals

- The direct determination of the effects of the contaminant film growth: the spectral response.
- **Substrate effect** on the film formation (e.g. island vs uniform layer).
- The verification of any mission's contamination budget in respect to the optics performance.
- The **optical characterization of the contamination** layer (by using thin-film techniques to model the obtained data).
- A **database** containing the optical properties of the contamination species. This will enable the estimation of contamination effects on other surfaces.
- **Environmental** effects (pressure, temperature, (V)UV irradiation).

2017 CCMPP - NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 8

•

= 11 🛌 == + 11 == 🔚 = 11 11 == = 📰 🖬 🖬 = 11 📰 🚟 💼

Test Method and Chamber

The **new test method** was designed to evaluate *in-situ* the performance of optical surfaces **during** the **deposition** of a **contamination layer**.

Evaluation of contamination's **direct consequences/effects** on sensitive surfaces.

Test Method and Chamber

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 10

RTV S691

Jaxa vs ESA Inter-comparison

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 11

*

RTV S691: Test Conditions

Item	ESA	JAXA
Pressure	10 ⁻⁶ mbar	10 ⁻⁶ mbar
Temperature Substrate	-79°C to -82°C	-80°C
Temperature QCM	-78°C	-80°C
Temperature KC	+120°C	+120°C
Optical Substrate	SiO2, CaF2, ZnSe	SiO 2

Contaminant Source Material: **RTV S691** cured by JAXA

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 12

*

RTV S691: SiO2 In-situ results

- Main absorption peak: < 240 nm
- Second absorption peak: 270 nm
- Thickness increase = transmittance decrease
- There are small interferometer fringes noticeable from a thickness of 85 nm.

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 13

RTV S691: Comparison to JAXA results

Contaminant Thickness: 0nm

• Offset of approximately 1% over the whole wavelength range.

2017 CCMPP - NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 14

Exploration Agency 100 Transmittance (%) Normal T_arsmittance{% Offset 10nm (JAXA - ESA) 95 90 ESA10 nm 85 www.www.www.www. offset JAXA 10 nm 80 -3 200 400 600 800 1000 -4 -5 Wavelength [nm] 200 400 800 600 1000 Wavelength [nm] 100 5 Transmittance (%) 95 Normal T_{ans}mittance[%] Offset 20nm (JAXA - ESA) 90 mmmm ESA 20 nm 85 Absorption peak JAXA 20 nm offset 80 -3 200 400 600 800 1000 -4 -5 Wavelength [nm] 200 800 400 600 1000 Wavelength[nm] 2017 CCMPP - NASA's Goddard Space Flight Center B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 15

RTV S691: Comparison to JAXA results

Europea 🔶 Europea

RTV S691: CaF2 In-situ contamination results

- Main absorption: < 240 nm
- Second absorption peak: 270 nm
- Thickness increase = transmittance decrease

2017 CCMPP - NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 16

•

RTV S691: ZnSe In-situ contamination results

Thickness increase = transmittance increase

= •• b= •= + •• •• = = = = •• •• •• = = = #= •• •• •• = •= •• ** ••

RTV S691: Surface observation

Leica Confocal Microscope

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 18

First results

Scotch-weld Epoxy Adhesive

Sponsored by **Plato Mission**

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 19

•

SW: Test Conditions

2017 CCMPP - NASA's Goddard Space Flight Center

SW: Clean MgF2 – 0 nm to 25 nm

European Space Agency

SW: Clean MgF2 –up to 43nm

SW: Stability

After the growth of the contamination layer, the samples were kept in vacuum at isothermal conditions (-85°C) during >50h. To assess possible *time-dependent* phenomena.

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 23

÷

= II 🛌 ## ## II 💻 🚝 = II II = = ## 🛶 🖉 II = ## ## ##

SW: Optical Microscope

Clean MgF2 window

O2 Plasma treated

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 24

2017 CCMPP – NASA's Goddard Space Flight Center

SW: Confocal Microscopy

Clean MgF2 window

O2 Plasma treated

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 25

÷

Data Treatment Methods

A) Absorption Coefficient

Nasa Report 4740 Contamination Control Engineering Guidelines

B) **Complex Index of Refraction** Spectra Modelling

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 26

+

= II 🛌 :: 🖛 + II 🗯 들 = II II = = = :: 🖬 🖬 🖬 = :I 👀 💥 🔚

Absorption Coefficient

Calculation of the Absorption Coefficient of the outgassed contaminants from Scotch-weld Adhesive

 $\tau^{x}(\lambda) = \tau(\lambda) \exp[-\alpha_{c}(\lambda)x]$

```
Thickness derived from QCM, assumed density = 1 \text{ g/cm}^3
```

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 27

*

Absorption Coefficient

Comparison between different outgassing sources.

Comparison plots for qualitative information only

Araldite and RTV 691 data from the commissioning phase of the facility (different temperatures of the source, substrates, ...)

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 28

Complex Index of Refraction Modelling

Full Characterization

MgF2 substrate

Thickness QCM (nm)	Model (nm)
0	0
25	26.7
39	39.2
43	42.4

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 29

¥

2017 CCMPP - NASA's Goddard Space Flight Center

|| |= += += || = != = || || || = = = != || || || = || = ||

European Space Agency

Closing Remarks

- Closer to **understanding** the effects of contamination on the overall performance of the subsystem.
- Mission's contamination budget **verification**.
- **Affinity** substrate/contamination.
- **Environmental** effects (pressure, temperature, (V)UV irradiation).
- Database.

2017 CCMPP - NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 32

*

Thank you for your attention!!

2017 CCMPP – NASA's Goddard Space Flight Center

B. Bras, Y. Tsuchiya, R. Rampini, C. Semprimoschnig | 20/07/2017 | Slide 33

*