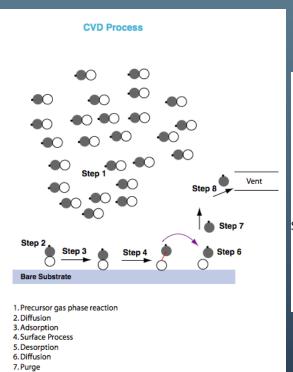


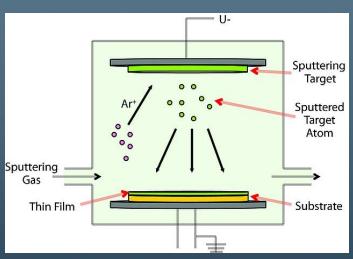
An Introduction to Atomic Layer Deposition

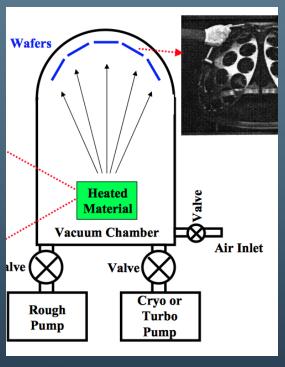
Dr. Vivek H. Dwivedi NASA GSFC Code 545

What is a Thin Film?

Thin film: thickness typically <1000nm.


Special properties of thin films: different from bulk materials, it may be –


- Not fully dense
- Under stress
- Different defect structures from bulk
- Quasi two dimensional (very thin films)
- Strongly influenced by surface and interface effects



Other Deposition Techniques

Common Denominator

- •Deposition only occurs on substrates that "see" the target.
- •Plasma process can damage the substrate
- Poor thickness control
- Poor Step Control
- •High Pressure High Temperature Environment

Step Coverage Example Metal Metal (a) (b) conformal non-conformal

Step coverage of metal over non-planar topography.

- (a) Conformal step coverage, with constant thickness on horizontal and vertical surfaces.
- (b) Poor step coverage, here thinner for vertical surfaces.

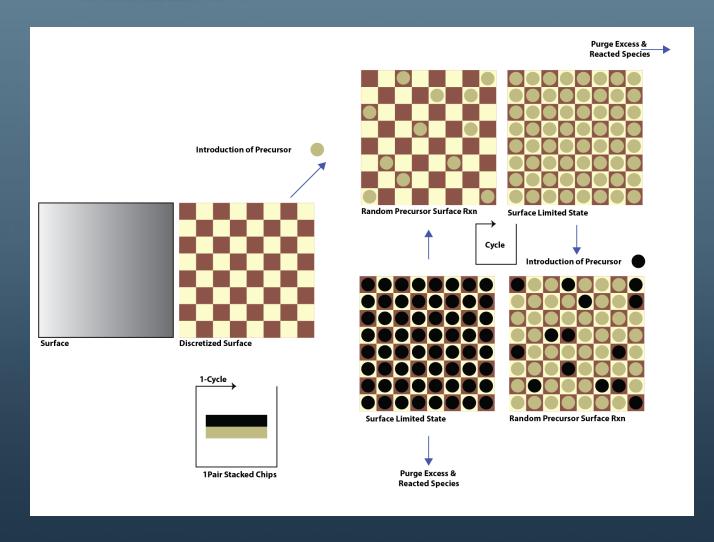
Introduction

Atomic

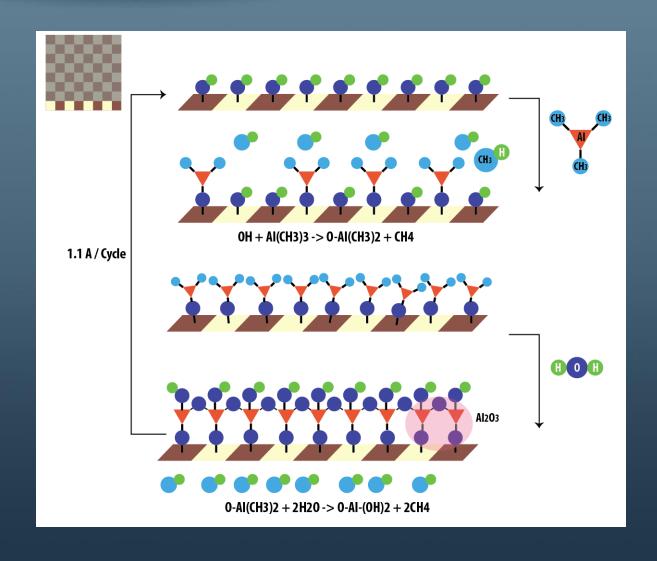
Layer

Deposition

A thin film "nanomanufacturing" tool that allows for the conformal coating materials on a myriad of surfaces with precise atomic thickness control.


Based on:

- Paired gas surface reaction chemistries
- Benign non-destructive temperature and pressure environment
 - Room temperature -> 250 °C (even lower around 45 °C)
 - Vacuum


ALD Procedure

ALD Procedure

Periodic Table of ALD Films

H 1			0:Oxide		C:Car F:Fluo												He 2
Li 3	Be 4	M:Metal D:Dopant P:Phosphide/Asenide S:Sulphide/Selenide/Telluride										0 N B 5	C 6	N 7	O 8	F 9	Ne 10
Na 11	Mg 12 F	Oxide of this element has been deposited by the ALD community Recipe for this material is available from CNT staff or customer base											N M Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca 20 F	Sc 21	Ti S	V 23	Cr 24	Mn 25	Fe 26	O N M Co 27	Ni Ni 28	ONM Cu 29 S	Zn 30 F D	Ga B 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38 F	Y 39	○ N Zr 40	N Nb 41	O N M MO 42	Tc 43	Ru 44	O M Rh 45	Pd 46	Ag 47	Cd s	In s	Sn s 50 D	O M Sb 51	Te 52	 53	Xe 54
Cs 55	Ba 56 S	La s	O N Hf 72 S	ONM Ta 73	O N M W 74	Re 75	Os 76	O M Ir 77	O M Pt 78	Au 79	Hg s	TI 81	Pb s	O Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra 88	Ac 89	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109									
				o Ce	o Pr	Nd	Pm	o Sm	o Eu	o Gd	° Tb	o Dy	ОНО	© Er	o Tm	o Yb	o Lu
				58 D	59	60	61	62	63 D	64	65 D	66	67	68	69 D	70	71
				Th 90	Pa 92	U 93	Np 94	Pu 95	Am 96	Cm 97	Bk 98	Cf 100	Es 101	Fm 102	Md 104	No 4	Lr 4

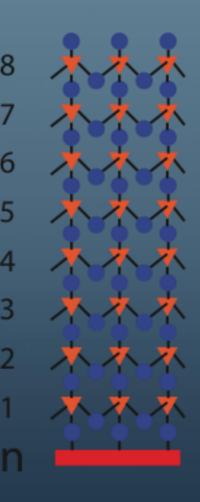
Acknowledgements

- Gordon, Roy (2008). Atomic Layer Deposition (ALD): An Enable for Nanoscience and Nanotechnology. PowerPoint lecture presented at Harvard University, Cambridge, MA.
- Elam, Jeffrey (2007). ALD Thin Film Materials. Argonne National Laboratory

Advantageous Property

Precise Thickness Control

Thickness = F (# monolayers)


Example:

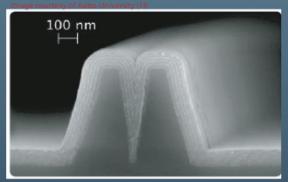
If 1 monolayer = 1 A

monolayers = 7

Thickness = 7 A

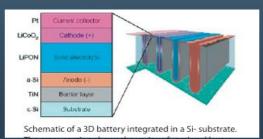
Reproducibility

Advantageous Property



Advantageous Property

Epitaxial Growth


Artificial trench filled with an ALD nanolaminate

Multilayer consisting of: Al2O3 - 25 nm TiN - 20 nm Al2O3 - 25 nm

AI,O,

TIN Al,O,

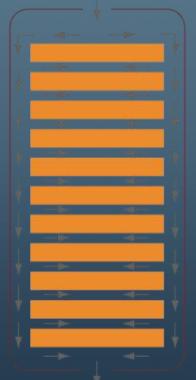

The cross-section snows the various functional layers in the battery stack as well as the candidate materials.

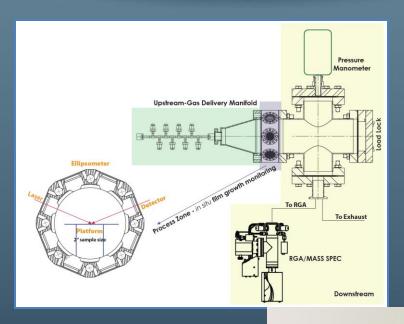
Figure 9. 1. C. M. et al. FCS Trans. 25 (2005) no. 233-346

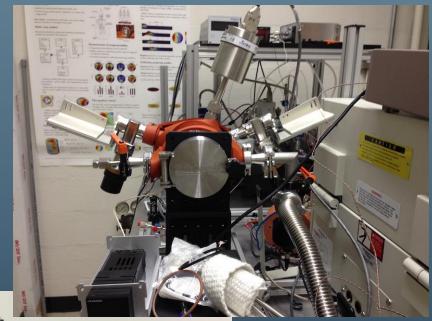
Batch Process

Coating Silver with Aluminum Oxide http://www.elargonue/s.com/

Building off a Commercial Reactor

Commercial Options

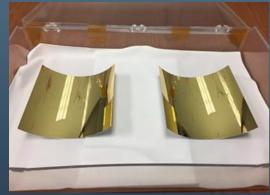


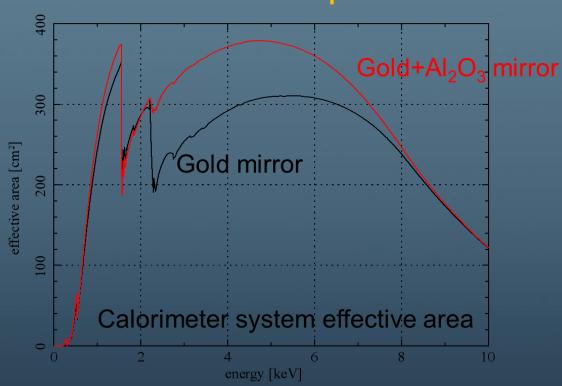


In-House Experimental ALD System

Open Source Solutions

PYBv1.1


Define Define Arrays: Generate Calculate Init Software **Precursors** Scan Rate Valve State **Buffer** Pulse Time Object Ar On/Off Map for One Allocation DAQ On/Off Wait Time Cycle Cycles End yes Load The Step Through No Calculate State Map the Valve Iterator = Cycles **Buffer Size** into Labjack States yes No: Iterator += 1 Buffer > 1/2

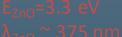

Applications and Results

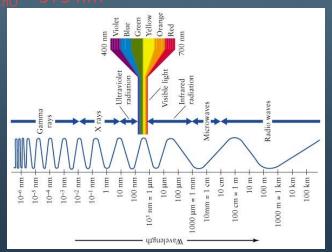
Effective area comparison

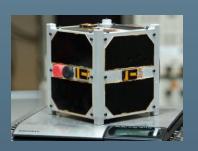
~1600 Au Coated Mirrors 4x10" curved 50 cm/20"diameter cartridge

ZnO

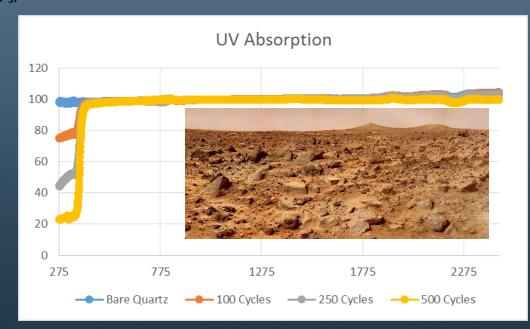
$E = \frac{hc}{\lambda}$ where:

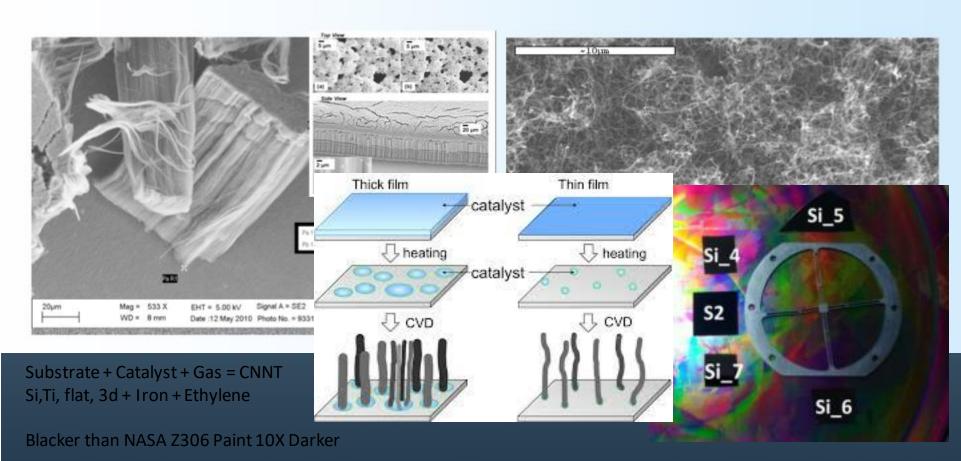

 $f = frequency in Hertz (Hz = \frac{1}{sec})$


 λ = wavelength in meters (m)

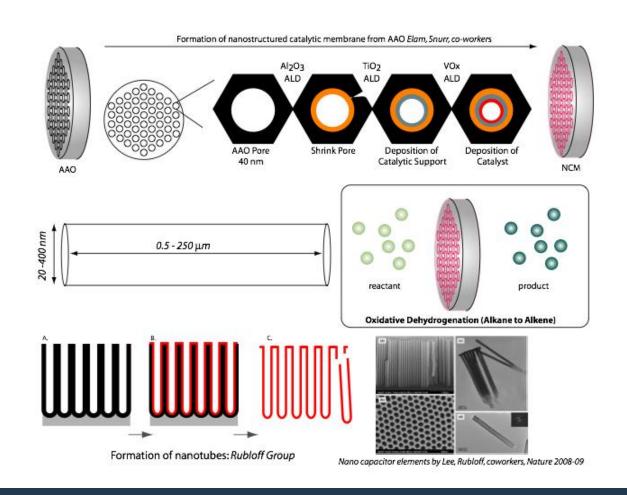

c = the speed of light (299792458 $^{\text{m}}/_{\text{s}}$)

E = energy in electron Volts (eV)

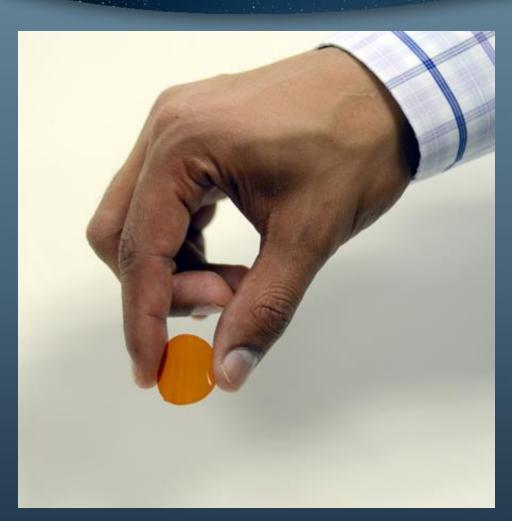

h = Plank's constant $(6.626068 \times 10^{-34} \text{ m2kg/s})$



Blacker Than Black Carbon Nanotubes



"Build" Nanotubes



Atomic Oxygen Protection

100 nm on Kapton 1000 Cycles 155 °C Al₂O₃

GPM Funded an experiment at Glenn to determine AO effects on materials.

99% mass retention after a simulated 5 year flux

Strategic Partnerships

Dr. Takashi Okajima (662)

Mark Hasegawa (546)

Dr. Manuel Quijada (551)

Dr. Raymond Adomaitis (UMD)

Dr. Brian Iverson (BYU)

Rydge Mulford (BYU)

Questions?

