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• ASTM-E-1559 test is one of the 

cornerstone analytical test methods for 

contamination analysis

• The test is composed of two phases

– Deposition: A sample at a known 

temperature outgasses material that is 

collected onto quartz crystal microbalances 

(QCM), also with well defined temperatures

– Desorption: Following deposition, the QCM 

is heated in a systematic manner and the 

temperature dependence of material 

desorbing from the surface is monitored

• In the Aerospace Contamination Effects 

Research Test (CERT) chamber, there are 

3 QCMs for deposition and desorption

– The center QCM is on a rotating stage and 

can be rotated to the entrance of a mass 

spectrometer

The ASTM E-1559 Test
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ASTM E-1559 Data
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Temperature Programmed Desorption (TPD)
Also referred to as thermo-gravimetric analysis (TGA)

• The change in QCM signal with respect to QCM temperature shows peaks that represent 

different species leaving the QCM surface

• Because the QCM only measures changes in frequency it is unable to provide chemical 

identification of the desorbing species
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• A Quadrupole Mass Spectrometer (QMS) 

is used to analyze species leaving the 

QCM surface during TPD heating

– The QMS uses an electron impact (EI) ionizer 

that fragments the parent species

– The QMS measures the mass of the ionized 

species 

– This forms a characteristic “mass fingerprint” 

for each species
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• Modern analytical instrumentation can 

produce immense amounts of data in a 

single experiment

• But most systems are characterized by 

only a handful of underlying processes or 

relationships

• MVA extracts information from data with 
multiple variables by using all variables 

simultaneously

– More efficient analysis of large datasets

– Can improve signal to noise

• MVA is used to more efficiently summarize, 

simplify and expose underlying trends

• MVA relies on data changing as a function 
of a second variable

– Mass spectra changing as a function of 

temperature)

Too Much Data!
More data does not equal more useful information
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Multivariate Analysis
Non negative matrix factorization (NNMF)

• NNMF decomposes the data matrix into a 

concentration and spectral components

– NNMF forces values in the “spectral” 
dimension to be positive

– Results look like real spectra

• The only user input is the number of 
components to be extracted
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• It is not magic

– Garbage in still equals garbage out

– No amount of data massaging can make 

up for poor experimental design or poor 

quality data

• It does not replace traditional 
approaches

– But traditional methods used in conjunction 

with MVA can provide a more efficient 

pathway to understanding your data

• It is not difficult

– There are numerous commercial and free 

packages available

– As with any approach, understanding the 

limitations of the method(s) will help to 

avoid pitfalls

What MVA is NOT

Component Spectra

Component Concentration
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Fluorene Contamination
Can Fluorene polymerize in the presence of UV?

Fluorene C13H10

• Fluorene proposed to be used on a 

picosat

• Questions were raised on whether 

it could polymerize with UV 

exposure

• Fluorene was deposited onto 

QCMs while being irradiated with a 

UV lamp

• TPD of deposited material showed 

two peaks. Polymerization?   
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Fluorene Contamination
Can Fluorene polymerize in the presence of UV?

• Mass spectral data identifies 

the large peak at 240 K as 

fluorine

• The mass spectra signal of the 

smaller peak at 300 shows the 

166 m/z marker for fluorine as 

well

m/z = 166
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Fluorene Contamination
NNMF analysis identifies peaks

• Fluorene sample used for analysis was labeled 

as 98% pure

• MVA analysis clearly separates flourene from 

the hydrocarbon impurity and chamber 

background

• Heavyhanded use of fluorene in sample cell 

resulted in fluorene chamber contamination 
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comp1 FluoreneHead to Tail MF=845 RMF=845
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White Fiberglass Tape TPD
Sticky tape has a number of chemical components

• QCM and mass spectral signal 

for white tape TPD shows good 

agreement

• Can MVA techniques be used to 

deconvolute the overlapping 

peaks?
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White Fiberglass Tape TPD
NNMF identifies individual chemical components
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• The addition of a mass spectrometer to 

analyze materials desorbing from QCM 

surfaces provides chemical insight that is 

unavailable with the QCM alone

• The use of multivariate techniques for 

analysis of TPD data can help to reduce 

a large amount of mass spectral 

information into simple and 

understandable components

• Both commercial and free multivariate 

software packages are available 

– Freeware: Python (scikit-learn), R, Octave

– Commercial: MATLAB (PLS Toolbox), 

CAMO (Unscrambler) 

Conclusions



Backup Slides
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QCM and Mass Spec Signal Discrepancy
A quick aside…

• During the TPD of some materials, 

the QCM and mass spectral signals 

showed large differences

• The entrance to the mass 

spectrometer is located about ½” 

from the front surface of the QCM

• The mass spectrometer can only 

detect molecules that have desorbed 

from the QCM surface

• Viscoelastic effects can result in 

QCM signal artifacts during TPD
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Dimensionality Reduction
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What is Multivatiate Analysis?

• Multivariate analysis (MVA) provides a 

means of summarizing a large number of 

variables into a smaller number of 

statistical variables

• MVA is a general term and includes 

approaches that can be used for:

– Identification: What species or 
components are present

– Classification: Does my data fit into a 

category? Is it an outlier?

– Quantification and Prediction: How does 

my data relate to a library of known 

samples

• It relies on data changing as a function of a 
second variable
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MVA Getting Started 

• Need data suitable for MVA analysis

– Spectral changes as a function of 

time, spatial location, depth, etc…

• MVA makes extensive use of matrix 

algebra

– Data needs to be arranged in row 

and column format prior to MVA 

analysis

Spectra
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Principal Component Analysis (PCA)

• Data matrix is diagonalized yielding 

eigenvectors (loadings) and 

eigenvalues (scores) that capture 

maximum variance

• Scores and loadings mathematically 

constrained to be orthogonal

– Resulting spectra can have 

positive or negative intensity and 

have no physical/chemical  

meaning

– Can be difficult to interpret

• No input from user
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• For all mass spec data, the higher resolution data is binned into 1 amu width bins

– Why? simple to implement computationally

– Python has fairly fast data structures (called dictionaries or hash tables) to 

deal with this type of data and make sorting, slicing, etc.. simple and rapid

– Avoids most issues pertaining to calibration (If a peak shifts slightly during 

collection, is it really shifting or is a new peak growing in? How much does it 

need to shift before you call it a “new” feature instead of a continuation of a 

previous peak) 

– Even with the loss of resolution, these methods consistently provide a great 

deal of insight

• Data is frequently Poisson scaled prior to MVA analysis

– This scaling adjusts each variable (m/z channel) so that the level of noise is 

equal for all variables

– This tends to enhance higher m/z signals that provide more characterization 

relative to the lower m/z signals

General Processing
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Self Modeling Curve Resolution (SMCR)
Multivariate Curve Resolution (MCR)

Self Modeling Mixture Analysis (SMMA)

• Model provides results related to physical data

– Results look like real spectra

– Easy to interpret

• MCR uses minimal a priori information to 

decompose the data matrix into chemically 

meaningful factors

• MCR deconvolutes original data 

into a concentration matrix and 

associated “pure” component 

spectra

• User must supply number of 

components to be modeled
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White Tape Component Spectra
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White Tape Component Spectra
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Fluorene Contamination
Comparison of extracted components shows peak differences


