

Jet Propulsion Laboratory California Institute of Technology

Materials Characterization for Contamination Mitigation on SHERLOC

Presented by Qian Nataly Chen, Materials and Processes Engineer Jet Propulsion Laboratory, California Institute of Technology July 18, 2017

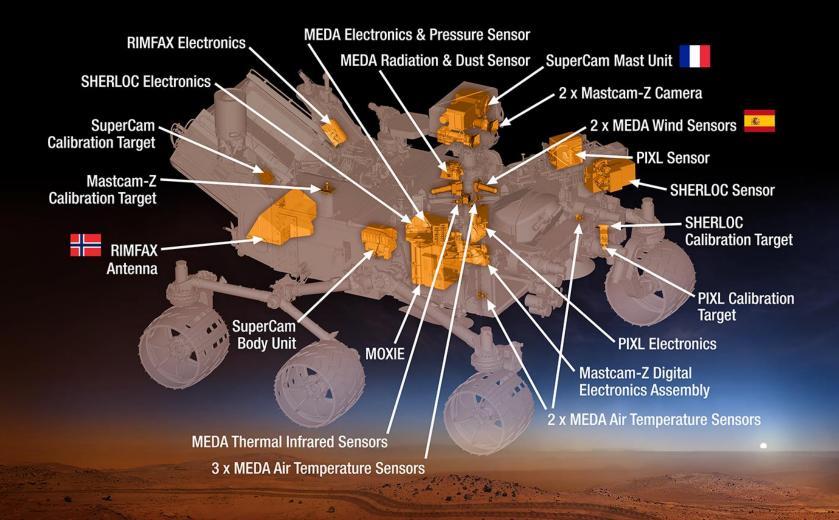
Scanning Habitable Environments with Raman and Luminescence for Organics & Chemicals

Contributors

Margarite Sylvia Contamination Control

Rohit Bhartia SHERLOC Deputy Principal Investigator

Ivria Doloboff Planetary Chemistry and Astrobiology

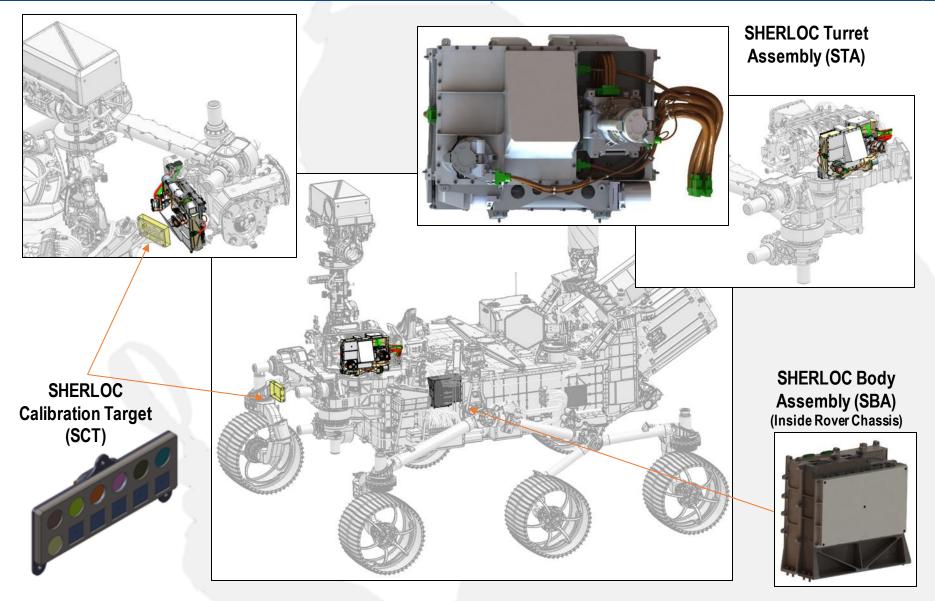

Nicholas Heinz Analytical Chemistry

Mark Anderson Analytical Chemistry

Lauren DeFlores SHERLOC Instrument Systems Engineer

All from Jet Propulsion Laboratory, California Institute of Technology

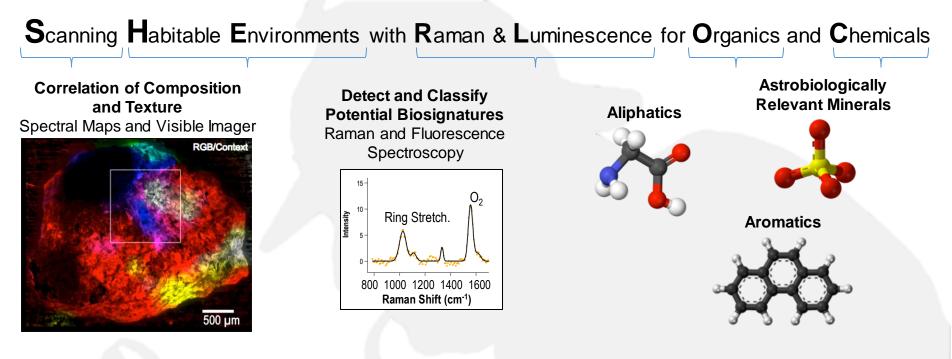
Mars 2020 Rover



SHERLOC Location on Rover

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

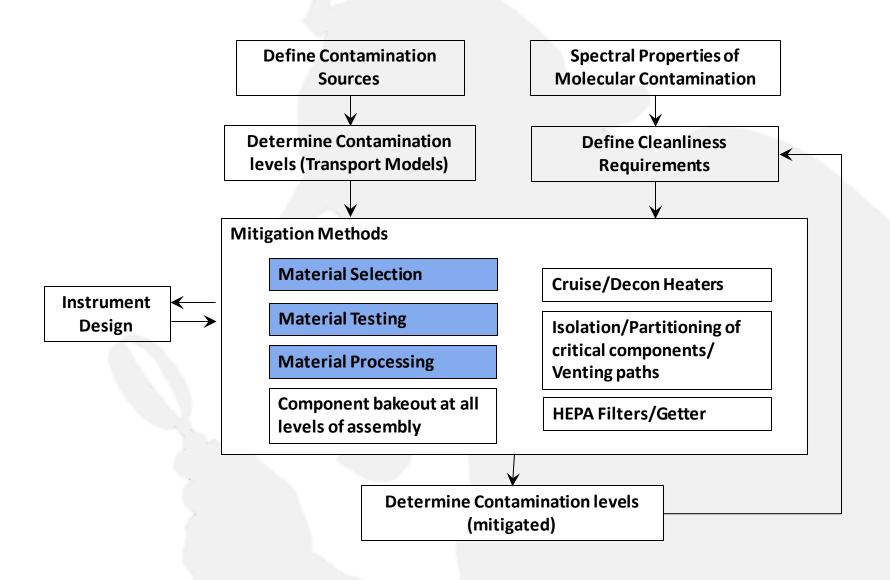

SHERLOC Overview

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

• *Detects* and *classifies* organics and astrobiologically relevant minerals on the surface and near subsurface of Mars.


- Organic sensitivity of 10⁻⁵ w/w over the observed area
- \bullet Organic sensitivity of 10 3 w/w spatially resolved at <100 μm
- \bullet Astrobiologically relevant mineral detection and classification to <100 μm

Contamination Control Plan

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

Materials Identification and Test Plan

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

- 1. Identify materials within optical bench
 - a) Select highest impact materials for increased testing
- 2. Obtain and prepare material samples, matching flight mix and cure conditions.
- 3. Test bulk materials, as feasible
 - Outgassing rate measurements via ASTM E1559 on high impact materials
 - Outgassing measurement via ASTM E595
 - DART-MS
 - FTIR
 - UV fluorescence
- 4. Outgas bulk samples onto cold collectors
 - Custom deposition onto optic
 - Modification of micro-VCM instrument operation
- 5. Characterization of outgassed contaminants
- 6. Evaluation and Material Selection

Materials Identification and Test Plan

SHERLOC

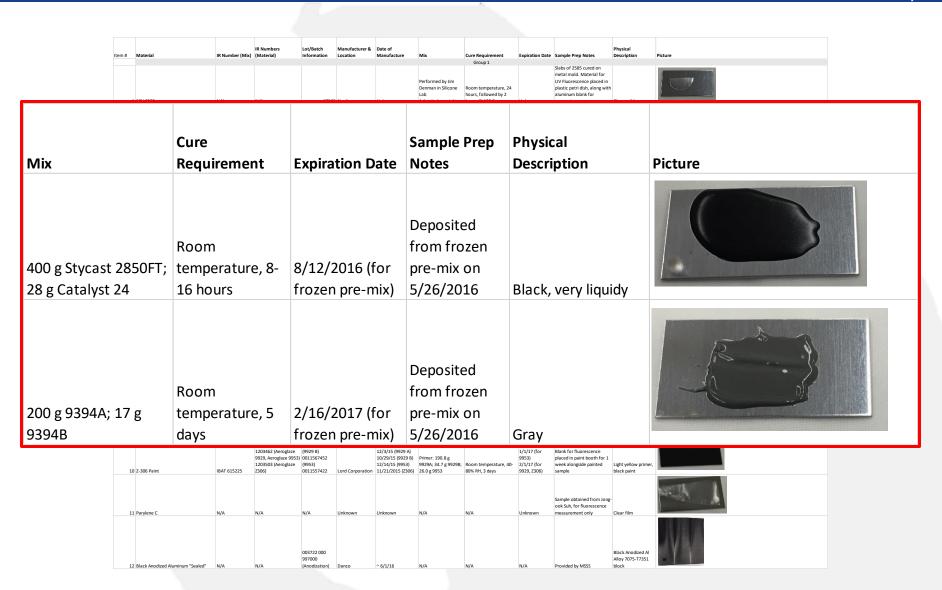
Jet Propulsion Laboratory California Institute of Technology

- 1. Identify materials within optical bench
 - a) Select highest impact materials for increased testing
- 2. Obtain and prepare material samples, matching flight mix and cure conditions.
- 3. Test bulk materials, as feasible
 - Outgassing rate measurements via ASTM E1559 on high impact materials
 - Outgassing measurement via ASTM E595
 - DART-MS
 - FTIR
 - UV fluorescence
- 4. Outgas bulk samples onto cold collectors
 - Custom deposition onto optic
 - Modification of micro-VCM instrument operation
- 5. Characterization of outgassed contaminants
- 6. Evaluation and Material Selection

Materials Identification and Preparation

SHERLOC

Jet Propulsion Laboratory California Institute of Technology


	Iter	n II Material IF	R Number (Mix)	IR Numbers (Material)	Lot/Batch Information	Manufacturer & Location	Date of Manufacture	Mix Performed by Jim Denman in Silicone Lab	Cure Requireme Group 1 Room temperatu hours, followed 1	re, 24	metal mol UV Fluore	585 cured on Id. Material for escence placed in tri dish, along wit		Picture	
tem #		Material	IRM	Number	(Mix)		lumbe aterial)	-		-	Batch mation		Manuf Locatic	acturer & on	Date of Manufacture
		Stycast 2850FT w/ Cat 24LV		1	20494	285	OFT)	Stycast Catalyst		Styc DX50	8000358 ast) 6001576 Ilyst 24)	5	Henkel		2/11/2015 (Stycas 8/3/2015 (Catalyst 24)
		EA 9394 A/B Gray		1;	20367	5		1203	3755	H5H	AE3815	5	Hysol		9/14/201
			3AT 615225	9929, Aeroglaze 9953)	(9953) 0011557422	Lord Corporation	12/3/15 (9929 A) 10/29/15 (9929 B) 12/14/15 (9953) 11/21/2015 (2306)	9929A; 34.7 g 9929B;	Room temperatu 80% RH, 3 days	995: re, 40- 2/1/ 992!	applied 6/ 17 (for Blank for i 3) placed in j 17 (for week alor 9, Z306) sample Sample ot	fluorescence paint booth for 1 ngside painted btained from Jon for fluorescence	Light yellow prime black paint		
		11 Parylene C N	,	N/A	003722 000 997000 (Anodization)		~ 6/1/16	N/A	N/A	Unk	Provided I	-	Clear film Black Anodized Al Alloy 7075-T7351 block	VV	

Materials Identification and Preparation

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

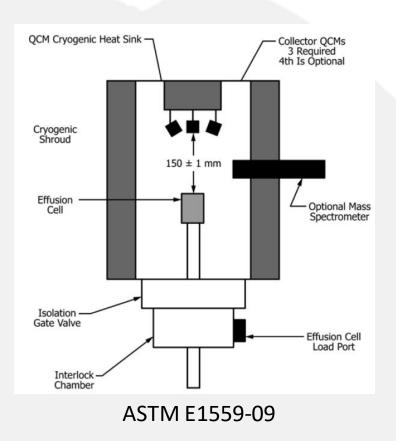
Materials Identification and Test Plan

SHERI OC Jet Propulsion Laboratory

- Identify materials within optical bench 1.
 - a) Select highest impact materials for increased testing
- 2. Obtain and prepare material samples, matching flight mix and cure conditions.
- 3. Test bulk materials, as feasible
 - Outgassing rate measurements via ASTM E1559 on high impact materials
 - Outgassing measurement via ASTM E595
 - DART-MS
 - **FTIR**
 - UV fluorescence
- 4. Outgas bulk samples onto cold collectors
 - Custom deposition onto optic
 - Modification of micro-VCM instrument operation
- 5. Characterization of outgassed contaminants
- 6. Evaluation and Material Selection

Material Selection for ASTM E1559

SHERLOC

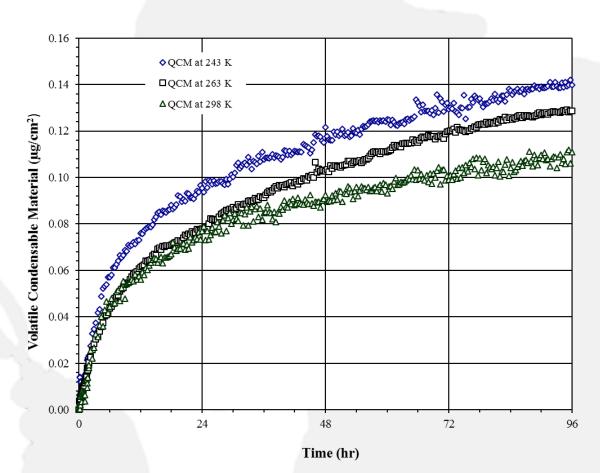

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

- SCV-2585 for bonding optics to optical mounts
 - Evaluated and qualified specifically for SHERLOC applications
- Aeroglaze Z306 black paint with Aeroglaze 9929 primer
- Loctite/Hysol EA 9394 Epoxy
- 3M Scotch-Weld 2216 Epoxy

All materials are first thermal vacuum baked at flight-relevant temperatures and durations, then tested per ASTM E1559 to obtain outgassing rates.

- Rates used for contamination modeling
- Guides material selection


ASTM E1559 Material Testing Results

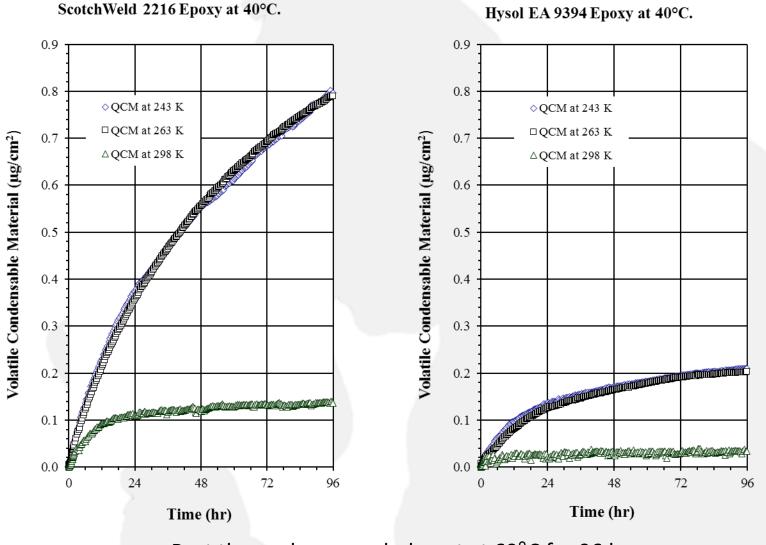
SHERLOC

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

NuSil SCV-2585 RTV Adhesive at 40°C.

Post thermal vacuum bakeout at 60°C for 96 hours


ASTM E1559 Material Testing Results

NASA

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

Post thermal vacuum bakeout at 60°C for 96 hours

Materials Identification and Test Plan

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

- 1. Identify materials within optical bench
 - a) Select highest impact materials for increased testing
- 2. Obtain and prepare material samples, matching flight mix and cure conditions.
- 3. Test bulk materials, as feasible
 - Outgassing rate measurements via ASTM E1559 on high impact materials
 - Outgassing measurement via ASTM E595
 - DART-MS
 - FTIR
 - UV fluorescence
- 4. Outgas bulk samples onto cold collectors
 - Custom deposition onto optic
 - Modification of micro-VCM instrument operation
- 5. Characterization of outgassed contaminants
- 6. Evaluation and Material Selection

Material Testing: ASTM E595

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

All bulk organic materials tested in flightlike mix and cured conditions.

 Majority of materials in MAPTIS, but not necessarily current and with exact mix/cure condition

		and the second se				
Material	Lot #	IR # 🗾 🔻	Test Nun 🔻	%TML	%WVR	%CVCM 🔽
CV1-2566	64042	N/A	160525	0.94	0.07	0.09
SCV-2585	67565	N/A	160525	0.03	0.03	0.00
SCV-2590	67299	N/A	160525	0.02	0.01	0.00
TFLEX	Unknown	N/A	160525	0.45	0.01	0.13
CV1-2566	64042	N/A	160615	0.95	0.08	0.10
EA 9309.3 NA	JH5FAA3305	1203414	160615	1.94	0.82	0.00
EA 9394 gray	JH5HAE3815	1203675	160615	1.72	0.78	0.00
Scotchweld 2216 filled	5068AR/5069AA	1204645	160615	1.14	0.60	0.00
Stycast 2850FT w/ CAT24LV	OX5B000358/OX5G001576	1204942	160615	0.73	0.21	0.00

Material Testing: DART-MS

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

All organic materials tested via DART Mass Spectrometry

• Standard against which flight lots can be screened

	Sample	Derived		
		%CVCM		
He	SCV 2585 Lot 67565	0.04		
	EA 9309.3, filled glass beads	0.1		
	EA 9394 A/B Gray	0.2		
	Scotch weld 2216 Filled Cabosil, Eccospheres	0.06		
Г	Stycast 2850FT w/cat 24LV	0.08		
-	EA 956 A/B	0.1		
4000	Scotchweld 2216 a/b	0.06		
2000	CV-2566	0.08		
. 1	Paralene C	0.06		
unts	EA 9309	0.01		
100 Counts 2000	Z306	0.03		
jā 2000 j	Lydall HEPA Filter	0.02		
1 7 -	Aluminized Kapton tape DM105 (adhesive)	0.04		
4000	Kapton Black Carbon filled Tape DM141 (adhesive)	0.06		
2000	EMI Tape 0.5" (adhesive)	0.1		
ہا۔ ہ	3M 966 0.5" (adhesive)	0.05		
10	<u> </u>	900 1000		
	M/Z			

Anderson, Mark S., Mass Spectrometry of Spacecraft Contamination Using Direct Analysis in Real-Time Ion Source, Journal of Spacecraft and Rockets, Vol. 51, No. 1, 2014.

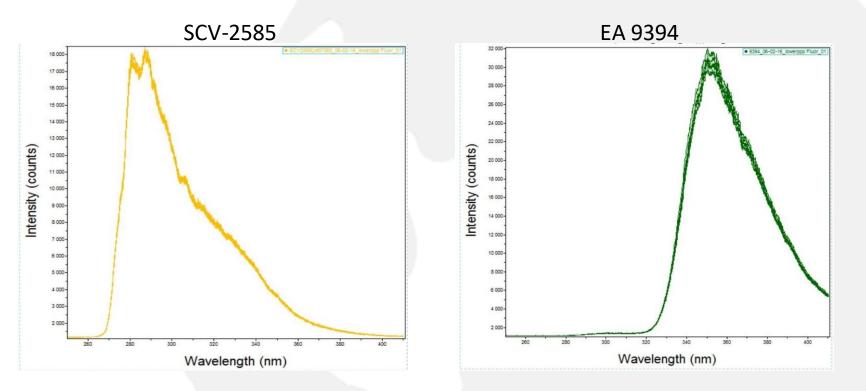
Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

All materials characterized via Fourier Transform Infrared (FTIR) Spectrometry

- With attenuated total reflectance (ATR) microscope attachment
- Chemical functional group information for material identification
- Data available for quantitative analysis as necessary

Sample	FTIR Functional
	Groups
SCV 2585 Lot 67565	Silicone, polydimethylsiloxane
EA 9309.3, filled glass beads	Ероху
EA 9394 A/B Gray	Ероху
Scotch weld 2216 Filled Cabosil, Eccospheres	Ероху
Stycast 2850FTw/cat 24LV	Ероху
EA 956 A/B	Ероху
Scotchweld 2216 a/b	Ероху
CV-2566	Silicone, polydimethylsiloxane
Paralene C	Paralene, poly(p-xylylene)
EA 9309	Ероху
Z306	Ероху
Lydall HEPA Filter	Polyester, polyethylene terephatalate
Aluminized Kapton tape DM105 (adhesive)	Acrylic
Kapton Black Carbon filled Tape DM141 (adhesive)	Kapton, Polyimide
EMI Tape 0.5" (adhesive)	Acrylic
3M 966 0.5" (adhesive)	Acrylic


SHERLOC

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

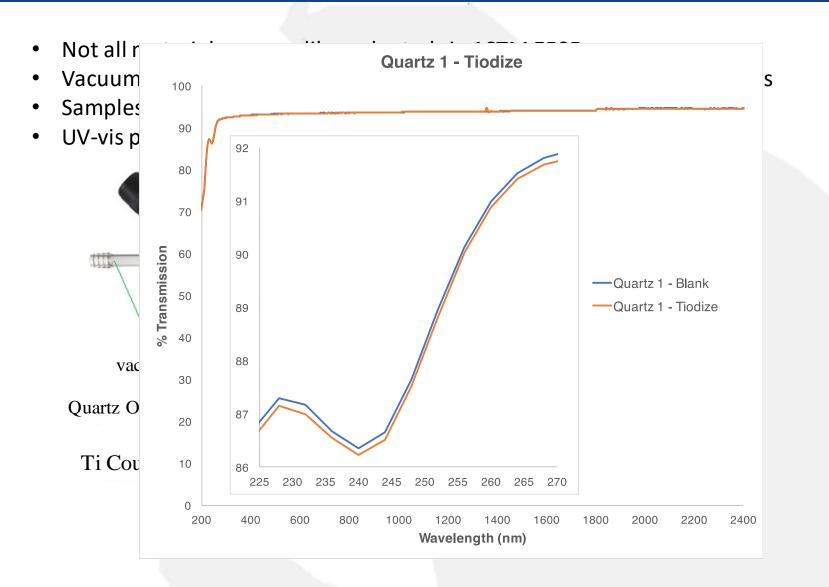
Fluorescence of bulk material tested with Deep UV Raman/Fluorescence Spectrometer

- SHERLOC-like bench top instrument
- Samples illuminated with deep UV laser (248.6 nm)
 - Incident photons absorbed and re-emitted at longer wavelength
- Primarily identification tool for organic materials used within optical bench

Materials Identification and Test Plan

SHERLOC

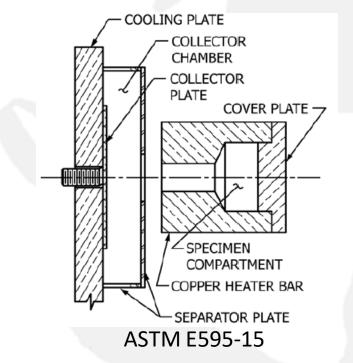
Jet Propulsion Laboratory California Institute of Technology


- 1. Identify materials within optical bench
 - a) Select highest impact materials for increased testing
- 2. Obtain and prepare material samples, matching flight mix and cure conditions.
- 3. Test bulk materials, as feasible
 - Outgassing rate measurements via ASTM E1559 on high impact materials
 - Outgassing measurement via ASTM E595
 - DART-MS
 - FTIR
 - UV fluorescence
- 4. Outgas bulk samples onto cold collectors
 - Custom deposition onto optic
 - Modification of micro-VCM instrument operation
- 5. Characterization of outgassed contaminants
- 6. Evaluation and Material Selection

Vacuum Deposition onto Optic

SHERLOC

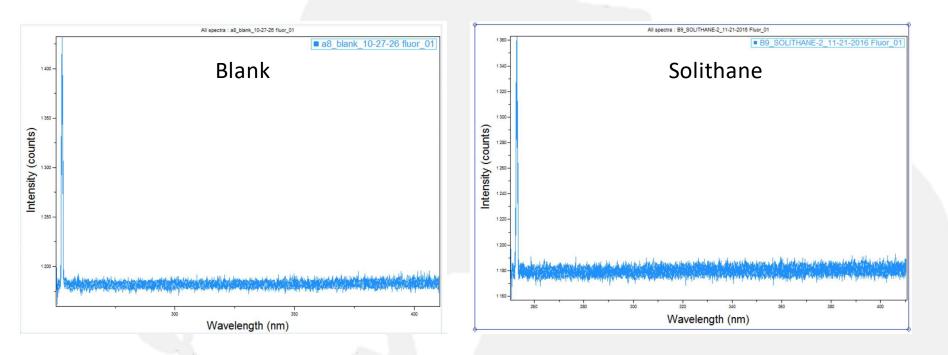
Jet Propulsion Laboratory California Institute of Technology


Collection of Outgassed Condensates

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

- UV Fluorescence measurement of bulk organic materials of limited utility
 - Characterization of outgassed condensate crucial for material screening
- Utilized Micro-VCM test chamber to outgas organic materials directly onto chromium-plated aluminum collector disc
 - Heated samples to 70°C, cooled targets to 10°C
 - Ran blank samples in between each material

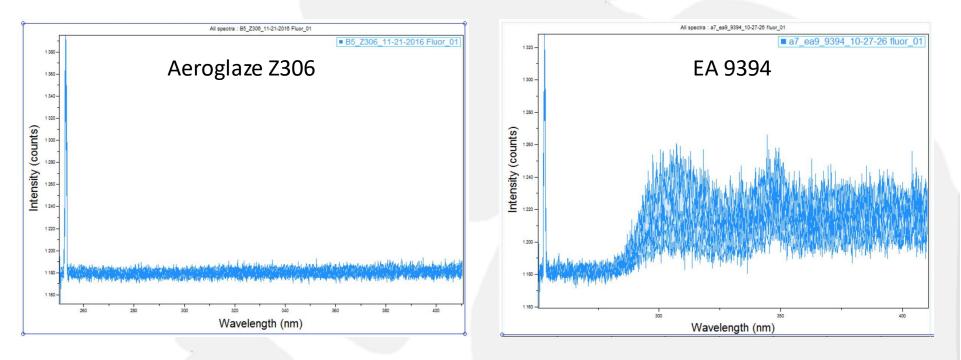


SHERLOC

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

Samples tested without thermal vacuum bake ("worst-case" scenario)



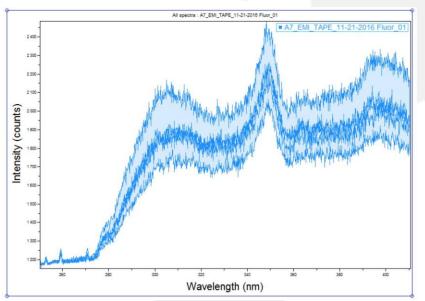
SHERLOC

Jet Propulsion Laboratory California Institute of Technology

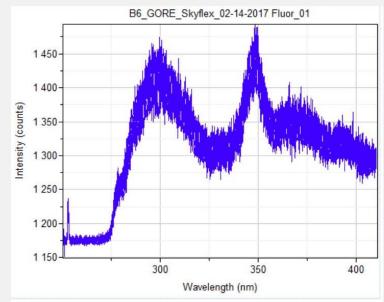
Mars 2020 Project

Samples tested without thermal vacuum bake ("worst-case" scenario)

UV Fluorescence Characterization


SHERLOC

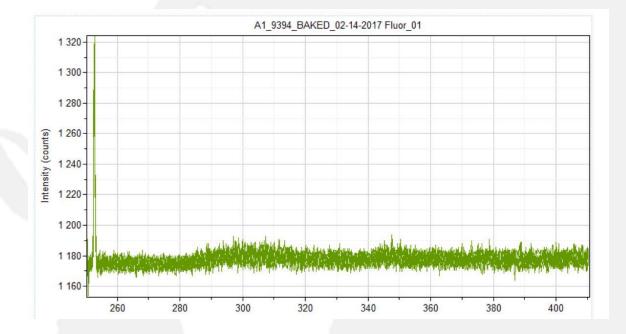
Jet Propulsion Laboratory California Institute of Technology


Mars 2020 Project

Samples tested without thermal vacuum bake ("worst-case" scenario)

Lairdtech EMI Tape

Gore Skyflex Gasket Tape


Evaluation and Material Selection

SHERLOC

Jet Propulsion Laboratory California Institute of Technology

- High outgassing materials, particularly those that outgas fluorescent condensates, banned from optical bench
- Questionable materials re-evaluated post-bakeout

SHERI OC Jet Propulsion Laboratory

- Completed evaluation of organic materials within optical bench
- **Results guided material selection**
- Ongoing work: continued evaluation of materials
 - ASTM E1559 of anodized coating
 - Post-bakeout evaluation of cabling materials previously banned
- Ongoing work: collection of samples of flight material
 - Future comparison against test data as needed

Jet Propulsion Laboratory

California Institute of Technology

jpl.nasa.gov