Outline

Introduction and Background

- History of color ratio pyrometry
- Advantages and complements to spectrometry
- Theory and assumptions

Current Progress

- Experimental setup
- Example videos
- Results and trends
- •Future Work and Conclusions

History of Color Ratio Pyrometry

- •First reportedly used in 1994 using infrared-sensitive pixel array to resolve temperature profiles of filaments [1].
- •Shown to be achievable using consumer color cameras for temperatures of 800-2500C with an error of 50C [2].
- •Extensively used on filament, soot, and direct injection spark ignition engines [3-8].
- •Densmore et al. has used color ratio pyrometry to probe burn characteristics of C-4 charges, fireballs, impact combustion, and thermite burn tubes [9-12].

Advantages and Complements to Spectrometry

SPECTROMETER	CAMERA
 Large areas focused onto optic cable and average temperature is calculated. Small point source of light used to measure temperature. 	 Bayer filter array separates incoming light into multiple channels onto a metal sensor. Sensitive to wider range of wavelengths.
 Temperature determined through Planck's Law. Allow for selective removal of channels with high elemental emission. 	 Temperature determined by taking ratios in channel intensities. Demosaicing algorithm applied to recorded pixels. Unable to selectively remove wavelengths.
 Advantages: Faster temporal resolution. Higher sensitivity when using PMT. 	 Advantages: Can be used to identify inhomogeneities in material and view spatiotemporal dynamics.
 Disadvantages: Unable to resolve space. 	 Disadvantages: Slower for larger areas and many assumptions.

Theory and Assumptions – Blackbody Radiation

- •Used to model stars, as energy escaping the surface is immediately replaced by hot core [13].
 - Same physical principle can be applied to hot nanoparticles.
- •Perfect emissivity across all wavelengths ($\epsilon = 1$) [14].
 - Temperature can be easily calculated by linearizing Planck's Law.

Theory and Assumptions – Camera Operation

• Digital color camera build:

- Light passes through lenses attached to camera.
- Mosaic color filter array serves as bandpass for wavelengths, with peak transmittance for wavelengths corresponding to the name (red/green/blue).
- Light passed through filter array strikes metal sensor which generates electrical signal based on intensity.
- Spectral response to color is specific to every camera based on the sensor and color filter array.
 - Vision Research Phantom Miro M110 response curve can be seen to the right.

Theory and Assumptions – Graybody and Color Ratio Pyrometry

 Graybody assumption: although emissivity is unknown, it is constant across the entire spectrum (ε ≠ ε(λ)).

- Color Ratio Pyrometry (CRP)
 - Intensity of light reported by channel is a function of the channel gain (ψ), the integrated product of Planck's Law, and camera spectral response.
 - Emissivity of particles cancel out when taking ratios between channels..
 - Theoretical ratios of channels can be calculated for different temperatures (I_{ii}).

Experimental Setup – Calibration

- Standardized blackbody heat source with known temperature recorded with color camera and contiguous center raw pixel values are extracted.
 - Newport Blackbody source and Avantes Avalight HAL-CAL light source both used to replicate spectra.
- Demosaicing algorithm applied to area in MATLAB using color filter array configuration.
- •Observed ratios between channels at known temperatures are compared to theoretical values to generate a calibration factor for the camera (ratio of channel gains).

Experimental Setup-Calculations & Processing

Example Videos – Thermite Reactions in Air (Al 0.4 Fe₂O₃/0.6 WO₃)

Example Videos – Thermite Reactions in Air (Ti KClO₄)

Example Videos – Thermal Shock of µAl in Graphene

Example Videos – T-Jump Thermite in Ar (Al 0.3 Fe₂O₃/0.7 WO₃)

Results and Trends

•Mean and median temperatures are usually higher than those reported by spectroscopic measurements.

- Sodium emission.
- Data reduction techniques.
- Provides more insight on possible mechanisms of reaction.
- •Trends in temperature between experiments are similar.

Future Work and Conclusions

- Color ratio pyrometry is a new tool that can be used to probe spatiotemporal burn characteristics of experiments.
 - Can be used to observe dynamics of reaction with an error up to 110C.
 - Can be used as a complement to or independently from a spectrometer.

Color ratio pyrometry is still in its infancy.

- Light scattering and emissions are still a large source of error.
 - Corrections have been proposed for emissivity such that $\epsilon \simeq 1/\lambda$ in thin flame fronts [15].
- Assumptions made in formulation may lead to high error in temperature measurements.
- Fidelity of calculations are heavily dependent on quality of video recorded.

Special Thanks

- •Rohit J. Jacob countless hours of guidance in experimental design and mentorship over the past 6 months.
- •Phil M. Guerieri optimization of MATLAB code developed for temperature measurements (cut down calculation time from 30 minutes to <30 seconds for 200+ frame videos).
- •Miles C. Rehwoldt providing sample data for this work and presentation of preliminary results at 2017 Combustion Institute.
- •Dr. Haiyang Wang preparation of material shown in this presentation.
- •Dr. Michael R. Zachariah continual guidance through PhD process and financial support of ongoing research projects in the lab.

Questions?

References

- 1. S. Pauzin, A. Giovannini and B. Bédat, "Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame," Experiments in Fluids, vol. 17, no. 6, pp. 397-404, 1994.
- 2. G. A. Tsyba, V. G. Salamatov and V. L. Polyakov, "A vide o pyrometer," Instruments and Experimental Techniques, vol. 46, no. 4, pp. 480-483, 2003.
- 3. H. Ma, R. Stevens and R. Stone, "In-cylinder temperature estimation from an optical spray-guided DISI engine with color-ratio pyrometry (CRP)," SAE Technical Paper, 2006.
- 4. B. C. Connelly, S. A. Kaiser, M. D. Smooke and M. B. Long, "Two-dimensional soot pyrometry with a color digital camera," in Joint Meeting of the US Sections of the Combustion Institute, 2005.
- 5. J. D. Maun, P. B. Sunderland and D. L. Urban, "Thin-Filament Pyrometry With a Digital Still Camera," Applied Optics, vol. 46, no. 4, pp. 483-488, 2007.
- 6. P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke and M. B. Long, "Soot and thin-filament pyrometry using a color digital camera," Proceedings of the Combustion Institute, vol. 33, no. 1, pp. 743-750, 2011.
- 7. T. Fu, X. Cheng, C. Shi, M. Zhong, T. Liu and X. Zheng, "The set-up of a vision pyrometer," *Measurement Science and Technology*, vol. 17, no. 4, p. 659, 2006.
- 8. S. Simonini, S. J. Elston and C. Stone, "Soot temperature and concentration measurements from colour charge coupled device camera images using a three-colour method," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 215, no. 9, pp. 1041-1052, 2001.
- 9. J. M. Densmore, B. E. Homan, M. M. Biss and K. L. McNesby, "High-speed two-camera imaging pyrometer for mapping fireball temperatures," Applied Optics, vol. 50, no. 33, pp. 6267-6271, 2011.
- 10. J. M. Densmore, M. M. Biss, B. E. Homan and K. L. McNesby, "Thermal imaging of nickel-aluminum-polytetra fluoroethylene impact initiated combustion," Journal of Applied Physics, vol. 112, no. 8, p. 084911, 2012.
- 11. J. M. Densmore, K. T. Sullivan, A. E. Gash and J. D. Kuntz, "Expansion behavior and temperature mapping of thermites in burn tubes as a function of fill length," Propellants, Explosives, Pyrotechnics, vol. 39, no. 3, pp. 416-422, 2014.
- 12. S. F. Green, M. H. Jones and S. J. Burnell, An introduction to the sun and stars, Cambridge University Press, 2004, p. 53.
- 13. C. Wyatt, Radiometric Calibration: Theory and Methods, Elsevier Science, 2012.
- 14. Smith, J. L. (2016). Design and construction of a fixture to examine the explosive effects of Al/I 2 0 5 (Doctoral dissertation, New Mexico Institute of Mining and Technology).
- 15. J. Kalman and T. Hedman, "On the Origin and Use of the Emissivity Approximations for Alumina Particles," *Propellants, Explosives, and Pyrotechnics*, vol. 41, no. 5, pp. 793-797, 2016.

